Skip to main content

Regulation of Polar Auxin Transport by Protein–Protein Interactions

  • Chapter
  • First Online:
Polar Auxin Transport

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 17))

Abstract

Work over the last years has uncovered that during the highly integrative process of polar auxin transport, dynamic interactions of membrane proteins with other membrane or soluble proteins or modulatory drugs are providing a high degree of flexibility. This overall concept is supported by the recent release of a first, partial Arabidopsis interactome by the Arabidopsis Interactome Mapping Consortium. In this context, we have summarized the current knowledge of posttranscriptional regulation of auxin transport with an emphasis on protein–protein interaction and protein phosphorylation. We suggest a novel protein–protein interaction feedback loop of auxin transport. Further, we summarize evidence that this interaction loop is tightly interconnected with a previously described PIN polarity loop via AGC3 kinases represented by PINOID. These data are compatible with the view of a putative multi-protein auxin efflux complex that is building the basis for a plastic and economic control of auxin streams during PAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailly A, Sovero V, Geisler M (2006) The twisted dwarf's ABC: how immunophilins regulate auxin transport. Plant Signal Behav 1:277–280

    PubMed  Google Scholar 

  • Bailly A, Sovero V, Vincenzetti V, Santelia D, Bartnik D, Koenig BW, Mancuso S, Martinoia E, Geisler M (2008) Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J Biol Chem 283:21817–21826

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay A, Blakeslee JJ, Lee OR, Mravec J, Sauer M, Titapiwatanakun B, Makam SN, Bouchard R, Geisler M, Martinoia E, Friml J, Peer WA, Murphy AS (2007) Interactions of PIN and PGP auxin transport mechanisms. Biochem Soc Trans 35:137–141

    PubMed  CAS  Google Scholar 

  • Barbez E, Kubes M, Rolcik J, Beziat C, Pencik A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y, Zazimalova E, Petrasek J, Geisler M, Friml J, Kleine-Vehn J (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119–122

    PubMed  CAS  Google Scholar 

  • Barik S (2006) Immunophilins: for the love of proteins. Cell Mol Life Sci 63:2889–2900

    PubMed  CAS  Google Scholar 

  • Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465

    PubMed  CAS  Google Scholar 

  • Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067

    PubMed  CAS  Google Scholar 

  • Bennett S, Alvarez J, Bossinger G, Smyth D (1995) Morphogenesis in pinoid mutants of Arabidopsis thaliana. Development 128:4057–4067

    Google Scholar 

  • Benschop JJ, Mohammed S, O'Flaherty M, Heck AJ, Slijper M, Menke FL (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214

    PubMed  CAS  Google Scholar 

  • Bernasconi P, Patel BC, Reagan JD, Subramanian MV (1996) The N-1-naphthylphthalamic acid-binding protein is an integral membrane protein. Plant Physiol 111:427–432

    PubMed  CAS  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, Sauer M, Makam SN, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer WA, Murphy AS (2007) Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19:131–147

    PubMed  CAS  Google Scholar 

  • Blecher O, Erel N, Callebaut I, Aviezer K, Breiman A (1996) A novel plant peptidyl-prolyl-cis-trans-isomerase (PPIase): cDNA cloning, structural analysis, enzymatic activity and expression. Plant Mol Biol 32:493–504

    PubMed  CAS  Google Scholar 

  • Bosco CD, Dovzhenko A, Liu X, Woerner N, Rensch T, Eismann M, Eimer S, Hegermann J, Paponov IA, Ruperti B, Heberle-Bors E, Touraev A, Cohen JD, Palme K (2012) The endoplasmic reticulum localized PIN8 is a pollen specific auxin carrier involved in intracellular auxin homeostasis. Plant J 71:860–870

    Google Scholar 

  • Bouchard R, Bailly A, Blakeslee JJ, Oehring SC, Vincenzetti V, Lee OR, Paponov I, Palme K, Mancuso S, Murphy AS, Schulz B, Geisler M (2006) Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J Biol Chem 281:30603–30612

    PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. Plant Physiol 126:524–535

    PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145:478–490

    PubMed  CAS  Google Scholar 

  • Burgardt NI, Linnert M, Weiwad M, Geisler M, Lucke C (2012) NMR assignments of the FKBP-type PPIase domain of FKBP42 from Arabidopsis thaliana. Biomol NMR Assign 6:185–188

    PubMed  CAS  Google Scholar 

  • Chambers TC, McAvoy EM, Jacobs JW, Eilon G (1990) Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells. J Biol Chem 265:7679–7686

    PubMed  CAS  Google Scholar 

  • Chen J, Lalonde S, Obrdlik P, Noorani Vatani A, Parsa SA, Vilarino C, Revuelta JL, Frommer WB, Rhee SY (2012) Uncovering Arabidopsis membrane protein interactome enriched in transporters using mating-based split ubiquitin assays and classification models. Front Plant Sci 3:124

    PubMed  CAS  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Y (2008) NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 105:21017–21022

    PubMed  CAS  Google Scholar 

  • Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS (2011) phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9:e1001076

    PubMed  CAS  Google Scholar 

  • Conseil G, Baubichon-Cortay H, Dayan G, Jault JM, Barron D, Di Pietro A (1998) Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc Natl Acad Sci USA 95:9831–9836

    PubMed  CAS  Google Scholar 

  • Conseil G, Perez-Victoria JM, Jault JM, Gamarro F, Goffeau A, Hofmann J, Di Pietro A (2001) Protein kinase C effectors bind to multidrug ABC transporters and inhibit their activity. Biochemistry 40:2564–2571

    PubMed  CAS  Google Scholar 

  • Consortium AIM (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333:601–607

    Google Scholar 

  • Cox DN, Muday GK (1994) NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton. Plant Cell 6:1941–1953

    PubMed  CAS  Google Scholar 

  • De Bodt S, Hollunder J, Nelissen H, Meulemeester N, Inze D (2012) CORNET 2.0: integrating plant coexpression, protein-protein interactions, regulatory interactions, gene associations and functional annotations. New Phytol 195:707–720

    PubMed  Google Scholar 

  • de la Fuente van Bentem S, Anrather D, Roitinger E, Djamei A, Hufnagl T, Barta A, Csaszar E, Dohnal I, Lecourieux D, Hirt H (2006) Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. Nucleic Acids Res 34:267–3278

    Google Scholar 

  • Dela Fuente RK, Leopold AC (1973) A role for calcium in auxin transport. Plant Physiol 51:845–847

    PubMed  CAS  Google Scholar 

  • Dhonukshe P, Huang F, Galvan-Ampudia CS, Mahonen AP, Kleine-Vehn J, Xu J, Quint A, Prasad K, Friml J, Scheres B, Offringa R (2010) Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 137:3245–3255

    PubMed  CAS  Google Scholar 

  • Ding Z, Galvan-Ampudia CS, Demarsy E, Langowski L, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–452

    PubMed  CAS  Google Scholar 

  • Ding Z, Wang B, Moreno I, Dupláková N, Simon S, Carraro N, Reemmer J, Pěnčík A, Chen X, Tejos R, Skůpa P, Pollmann S, Mravec J, Petrášek J, Zažímalová E, Honys D, Rolčík J, Murphy A, López AO, Geisler M, Friml J (2012) ER-localized auxin transporter PIN8 regulates auxin homoeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941. doi: 10.1038/ncomms.1941

    PubMed  Google Scholar 

  • Edlich F, Lucke C (2011) From cell death to viral replication: the diverse functions of the membrane-associated FKBP38. Curr Opin Pharmacol 11:1–6

    Google Scholar 

  • Edlich F, Weiwad M, Erdmann F, Fanghanel J, Jarczowski F, Rahfeld JU, Fischer G (2005) Bcl-2 regulator FKBP38 is activated by Ca2+/calmodulin. EMBO J 24:2688–2699

    PubMed  CAS  Google Scholar 

  • Edlich F, Maestre-Martinez M, Jarczowski F, Weiwad M, Moutty MC, Malesevic M, Jahreis G, Fischer G, Lucke C (2007) A novel calmodulin-Ca2+ target recognition activates the Bcl-2 regulator FKBP38. J Biol Chem 282:36496–36504

    PubMed  CAS  Google Scholar 

  • Feraru E, Friml J (2008) PIN polar targeting. Plant Physiol 147:1553–1559

    PubMed  CAS  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865

    PubMed  CAS  Google Scholar 

  • Furutani M, Kajiwara T, Kato T, Treml BS, Stockum C, Torres-Ruiz RA, Tasaka M (2007) The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level. Development 134:3849–3859

    PubMed  CAS  Google Scholar 

  • Galvan-Ampudia CS, Offringa R (2007) Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci 12:541–547

    PubMed  CAS  Google Scholar 

  • Geisler M, Bailly A (2007) Tête-à-tête: FKBPs function as key players in plant development. Trends Plant Sci 12:465–473

    PubMed  CAS  Google Scholar 

  • Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102

    PubMed  CAS  Google Scholar 

  • Geisler M, Kolukisaoglu HU, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kalman Z, Koncz C, Dudler R, Blakeslee JJ, Murphy AS, Martinoia E, Schulz B (2003) TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14:4238–4249

    PubMed  CAS  Google Scholar 

  • Geisler M, Girin M, Brandt S, Vincenzetti V, Plaza S, Paris N, Kobae Y, Maeshima M, Billion K, Kolukisaoglu UH, Schulz B, Martinoia E (2004) Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. Mol Biol Cell 15:3393–3405

    PubMed  CAS  Google Scholar 

  • Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KF, Smith AP, Baroux C, Grossniklaus U, Muller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194

    PubMed  CAS  Google Scholar 

  • Geisler-Lee J, O'Toole N, Ammar R, Provart NJ, Millar AH, Geisler M (2007) A predicted interactome for Arabidopsis. Plant Physiol 145:317–329

    PubMed  CAS  Google Scholar 

  • Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J (2001) BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15:1985–1997

    PubMed  CAS  Google Scholar 

  • Granzin J, Eckhoff A, Weiergraber OH (2006) Crystal structure of a multi-domain immunophilin from Arabidopsis thaliana: a paradigm for regulation of plant ABC transporters. J Mol Biol 364:799–809

    PubMed  CAS  Google Scholar 

  • Harrar Y, Bellec Y, Bellini C, Faure JD (2003) Hormonal control of cell proliferation requires PASTICCINO genes. Plant Physiol 132:1217–1227

    PubMed  CAS  Google Scholar 

  • Hemenway CS, Heitman J (1996) Immunosuppressant target protein FKBP12 is required for P-glycoprotein function in yeast. J Biol Chem 271:18527–18534

    PubMed  CAS  Google Scholar 

  • Henrichs S, Wang B, Fukao Y, Zhu J, Charrier L, Bailly A, Oehring SC, Linnert M, Weiwad M, Endler A, Nanni P, Pollmann S, Mancuso S, Schulz A, Geisler M (2012) Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J 31:2965–2980

    PubMed  CAS  Google Scholar 

  • Huang F, Zago MK, Abas L, van Marion A, Galvan-Ampudia CS, Offringa R (2010) Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell 22:1129–1142

    PubMed  CAS  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally-occurring auxin transport regulators. Science 241:346–349

    PubMed  CAS  Google Scholar 

  • Jurgens G, Geldner N (2007) The high road and the low road: trafficking choices in plants. Cell 130:977–979

    PubMed  Google Scholar 

  • Kamphausen T, Fanghanel J, Neumann D, Schulz B, Rahfeld JU (2002) Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J 32:263–276

    PubMed  CAS  Google Scholar 

  • Kim JY, Henrichs S, Bailly A, Vincenzetti V, Sovero V, Mancuso S, Pollmann S, Kim D, Geisler M, Nam HG (2010) Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem 285:23309–23317

    PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 24:447–473

    PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Huang F, Naramoto S, Zhang J, Michniewicz M, Offringa R, Friml J (2009) PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis. Plant Cell 21:3839–3849

    PubMed  CAS  Google Scholar 

  • Lalonde S, Sero A, Pratelli R, Pilot G, Chen J, Sardi MI, Parsa SA, Kim DY, Acharya BR, Stein EV, Hu HC, Villiers F, Takeda K, Yang Y, Han YS, Schwacke R, Chiang W, Kato N, Loque D, Assmann SM, Kwak JM, Schroeder JI, Rhee SY, Frommer WB (2010) A membrane protein/signaling protein interaction network for Arabidopsis version AMPv2. Front Physiol 1:24

    PubMed  CAS  Google Scholar 

  • Lee SH, Cho HT (2006) PINOID positively regulates auxin efflux in Arabidopsis root hair cells and tobacco cells. Plant Cell 18:1604–1616

    PubMed  CAS  Google Scholar 

  • Lee K, Thorneycroft D, Achuthan P, Hermjakob H, Ideker T (2010) Mapping plant interactomes using literature curated and predicted protein-protein interaction data sets. Plant Cell 22:997–1005

    PubMed  CAS  Google Scholar 

  • Li JF, Bush J, Xiong Y, Li L, McCormack M (2011) Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation. PLoS One 6:e27364

    PubMed  CAS  Google Scholar 

  • Lomax TL, Muday GK, Rubery PH (1995) Auxin transport. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 509–530

    Google Scholar 

  • Luschnig C (2001) Auxin transport: why plants like to think BIG. Curr Biol 11:R831–R833

    PubMed  CAS  Google Scholar 

  • Merks RM, Van de Peer Y, Inze D, Beemster GT (2007) Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci 12:384–390

    PubMed  CAS  Google Scholar 

  • Michalke W, Gerard FK, Art EG (1992) Phytotropin-binding sites and auxin transport in Cucurbita pepo: evidence for two recognition sites. Planta 187:254–260

    CAS  Google Scholar 

  • Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056

    PubMed  CAS  Google Scholar 

  • Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule JJ, Blein JP, Simon-Plas F (2006) Proteomics of plant detergent-resistant membranes. Mol Cell Proteomics 5:1396–1411

    PubMed  CAS  Google Scholar 

  • Morris DA (2000) Transmembrane auxin carrier systems–dynamic regulators of polar auxin transport. Plant Growth Regul 32:161–172

    PubMed  CAS  Google Scholar 

  • Morris ME, Zhang S (2006) Flavonoid-drug interactions: effects of flavonoids on ABC transporters. Life Sci 78:2116–2130

    PubMed  CAS  Google Scholar 

  • Mravec J, Kubes M, Bielach A, Gaykova V, Petrasek J, Skupa P, Chand S, Benkova E, Zazimalova E, Friml J (2008) Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135:3345–3354

    PubMed  CAS  Google Scholar 

  • Mravec J, Skupa P, Bailly A, Hoyerova K, Krecek P, Bielach A, Petrasek J, Zhang J, Gaykova V, Stierhof YD, Dobrev PI, Schwarzerova K, Rolcik J, Seifertova D, Luschnig C, Benkova E, Zazimalova E, Geisler M, Friml J (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136–1140

    PubMed  CAS  Google Scholar 

  • Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128:935–950

    PubMed  CAS  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454

    PubMed  CAS  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405

    PubMed  Google Scholar 

  • Orr GA, Han EK, Browne PC, Nieves E, O'Connor BM, Yang CP, Horwitz SB (1993) Identification of the major phosphorylation domain of murine mdr1b P-glycoprotein. Analysis of the protein kinase A and protein kinase C phosphorylation sites. J Biol Chem 268:25054–25062

    PubMed  CAS  Google Scholar 

  • Palme K, Galweiler L (1999) PIN-pointing the molecular basis of auxin transport. Curr Opin Plant Biol 2:375–381

    PubMed  CAS  Google Scholar 

  • Peck SC (2006) Phosphoproteomics in Arabidopsis: moving from empirical to predictive science. J Exp Bot 57:1523–1527

    PubMed  CAS  Google Scholar 

  • Peer WA, Murphy AS (2006) Flavonoids as signal molecules targets of flavonoid action. In: Grotewold E (ed) The science of flavonoids. Springer, Berlin, pp 239–268

    Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563

    PubMed  CAS  Google Scholar 

  • Peer WA, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS (2001) Flavonoid accumulation patterns of transparent testa mutants of arabidopsis. Plant Physiol 126:536–548

    PubMed  CAS  Google Scholar 

  • Perez-Perez JM, Ponce MR, Micol JL (2004) The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiol 134:101–117

    PubMed  CAS  Google Scholar 

  • Petrasek J, Cerna A, Schwarzerova K, Elckner M, Morris DA, Zazimalova E (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131:254–263

    PubMed  CAS  Google Scholar 

  • Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    PubMed  CAS  Google Scholar 

  • Rakusova H, Gallego-Bartolome J, Vanstraelen M, Robert HS, Alabadi D, Blazquez MA, Benkova E, Friml J (2011) Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J 67:817–826

    PubMed  CAS  Google Scholar 

  • Robert HS, Friml J (2009) Auxin and other signals on the move in plants. Nat Chem Biol 5:325–332

    PubMed  CAS  Google Scholar 

  • Robert HS, Offringa R (2008) Regulation of auxin transport polarity by AGC kinases. Curr Opin Plant Biol 11:495–502

    PubMed  CAS  Google Scholar 

  • Rojas-Pierce M, Titapiwatanakun B, Sohn EJ, Fang F, Larive CK, Blakeslee J, Cheng Y, Cutler SR, Peer WA, Murphy AS, Raikhel NV (2007) Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin. Chem Biol 14:1366–1376

    PubMed  CAS  Google Scholar 

  • Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9:745–757

    PubMed  CAS  Google Scholar 

  • Sachs T (1969) Polarity and the induction of organized vascular tissues. Ann Bot 33:263–272

    Google Scholar 

  • Santelia D, Henrichs S, Vincenzetti V, Sauer M, Bigler L, Klein M, Bailly A, Lee Y, Friml J, Geisler M, Martinoia E (2008) Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem 283:31218–31226

    PubMed  CAS  Google Scholar 

  • Santner AA, Watson JC (2006) The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J 45:752–764

    PubMed  CAS  Google Scholar 

  • Scheidt HA, Vogel A, Eckhoff A, Koenig BW, Huster D (2007) Solid-state NMR characterization of the putative membrane anchor of TWD1 from Arabidopsis thaliana. Eur Biophys J 36:393–404

    PubMed  CAS  Google Scholar 

  • Schlicht M, Strnad M, Scanlon MJ, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluška F (2006) Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal Behav 1:122–133

    PubMed  Google Scholar 

  • Shirane M, Nakayama KI (2003) Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nat Cell Biol 5:28–37

    PubMed  CAS  Google Scholar 

  • Sistrunk ML, Antosiewicz DM, Purugganan MM, Braam J (1994) Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue-specific regulation. Plant Cell 6:1553–1565

    PubMed  CAS  Google Scholar 

  • Stoma S, Lucas M, Chopard J, Schaedel M, Traas J, Godin C (2008) Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput Biol 4:e1000207

    PubMed  Google Scholar 

  • Sukumar P, Edwards KS, Rahman A, Delong A, Muday GK (2009) PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol 150:722–735

    PubMed  CAS  Google Scholar 

  • Sussman MR, Gardner G (1980) Solubilization of the receptor for N-1-naphthylphthalamic acid. Plant Physiol 66:1074–1078

    PubMed  CAS  Google Scholar 

  • Szabo K, Bakos E, Welker E, Muller M, Goodfellow HR, Higgins CF, Varadi A, Sarkadi B (1997) Phosphorylation site mutations in the human multidrug transporter modulate its drug-stimulated ATPase activity. J Biol Chem 272:23165–23171

    PubMed  CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    PubMed  CAS  Google Scholar 

  • Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17:2922–2939

    PubMed  CAS  Google Scholar 

  • Titapiwatanakun B, Murphy AS (2009) Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition. J Exp Bot 60:1093–1107

    PubMed  CAS  Google Scholar 

  • Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A, Yang H, Mravec J, Sauer M, Cheng Y, Adamec J, Nagashima A, Geisler M, Sakai T, Friml J, Peer WA, Murphy AS (2009) ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J 57:27–44

    PubMed  CAS  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008a) Critical consideration on the relationship between auxin transport and calcium transients in gravity perception of Arabidopsis seedlings. Plant Signal Behav 3:521–524

    PubMed  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008b) Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol 146:505–514

    PubMed  CAS  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    PubMed  CAS  Google Scholar 

  • Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168

    PubMed  CAS  Google Scholar 

  • Wang B, Bailly A, Zwiewka M, Henrichs S, Azzarello E, Mancuso S, Maeshima M, Friml J, Schulz A, Geisler M (2013) Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell (in press)

    Google Scholar 

  • Weiergraber OH, Eckhoff A, Granzin J (2006) Crystal structure of a plant immunophilin domain involved in regulation of MDR-type ABC transporters. FEBS Lett 580:251–255

    PubMed  Google Scholar 

  • Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K, Blilou I, Rouquie D, Benkova E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    PubMed  CAS  Google Scholar 

  • Wu G, Otegui MS, Spalding EP (2010) The ER-localized TWD1 immunophilin is necessary for localization of multidrug resistance-like proteins required for polar auxin transport in Arabidopsis roots. Plant Cell 22:3295–3304

    PubMed  CAS  Google Scholar 

  • Zhang J, Nodzynski T, Pencik A, Rolcik J, Friml J (2010) PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc Natl Acad Sci USA 107:918–922

    PubMed  CAS  Google Scholar 

  • Zourelidou M, Muller I, Willige BC, Nill C, Jikumaru Y, Li H, Schwechheimer C (2009) The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana. Development 136:627–636

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Geisler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geisler, M., Henrichs, S. (2013). Regulation of Polar Auxin Transport by Protein–Protein Interactions. In: Chen, R., Baluška, F. (eds) Polar Auxin Transport. Signaling and Communication in Plants, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35299-7_8

Download citation

Publish with us

Policies and ethics