Skip to main content

Quantum Structure in Cognition: Why and How Concepts Are Entangled

  • Conference paper
Quantum Interaction (QI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7052))

Included in the following conference series:

Abstract

One of us has recently elaborated a theory for modelling concepts that uses the state context property (SCoP) formalism, i.e. a generalization of the quantum formalism. This formalism incorporates context into the mathematical structure used to represent a concept, and thereby models how context influences the typicality of a single exemplar and the applicability of a single property of a concept, which provides a solution of the Pet-Fish problem and other difficulties occurring in concept theory. Then, a quantum model has been worked out which reproduces the membership weights of several exemplars of concepts and their combinations. We show in this paper that a further relevant effect appears in a natural way whenever two or more concepts combine, namely, entanglement. The presence of entanglement is explicitly revealed by considering a specific example with two concepts, constructing some Bell’s inequalities for this example, testing them in a real experiment with test subjects, and finally proving that Bell’s inequalities are violated in this case. We show that the intrinsic and unavoidable character of entanglement can be explained in terms of the weights of the exemplars of the combined concept with respect to the weights of the exemplars of the component concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hampton, J.A.: Overextension of Conjunctive Concepts: Evidence for a Unitary Model for Concept Typicality and Class Inclusion. J. Exp. Psych.: Lear. Mem. Cog. 14, 12–32 (1988)

    Google Scholar 

  2. Hampton, J.A.: Disjunction of Natural Concepts. Memory & Cognition 16, 579–591 (1988)

    Article  Google Scholar 

  3. Osherson, D.N., Smith, E.E.: On the Adequacy of Prototype Theory as a Theory of Concepts. Cognition 9, 35–58 (1981)

    Article  Google Scholar 

  4. Hampton, J.: Conceptual Combination. In: Lamberts, K., Shanks, D. (eds.) Knowledge, Concepts, and Categories, pp. 133–159. Psychology Press, Hove (1997)

    Google Scholar 

  5. Zadeh, L.: Fuzzy Sets. Information & Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zadeh, L.: A Note on Prototype Theory and Fuzzy Sets. Cognition 12, 291–297 (1982)

    Article  Google Scholar 

  7. Osherson, D.N., Smith, E.E.: Gradedness and Conceptual Combination. Cognition 12, 299–318 (1982)

    Article  Google Scholar 

  8. Komatsu, L.K.: Recent Views on Conceptual Structure. Psych. Bull. 112, 500–526 (1992)

    Article  Google Scholar 

  9. Fodor, J.: Concepts: A Potboiler. Cognition 50, 95–113 (1994)

    Article  Google Scholar 

  10. Rips, L.J.: The Current Status of Research on Concept Combination. Mind and Language 10, 72–104 (1995)

    Article  Google Scholar 

  11. Aerts, D.: A Possible explanation for the Probabilities of Quantum Mechanics. J. Math. Phys. 27, 202–210 (1986)

    Article  MathSciNet  Google Scholar 

  12. Aerts, D.: The Construction of Reality and Its Influence on the Understanding of Quantum Structures. Int. J. Theor. Phys. 31, 1815–1837 (1992)

    Article  MathSciNet  Google Scholar 

  13. Aerts, D.: Quantum Structures, Separated Physical Entities and Probability. Found. Phys. 24, 1227–1259 (1994)

    Article  MathSciNet  Google Scholar 

  14. Aerts, D.: Foundations of Quantum Physics: A General Realistic and Operational Approach. Int. J. Theor. Phys. 38, 289–358 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gabora, L., Aerts, D.: Contextualizing Concepts Using a Mathematical Generalization of the Quantum Formalism. J. Exp. Theor. Art. Int. 14, 327–358 (2002)

    Article  MATH  Google Scholar 

  16. Aerts, D., Gabora, L.: A Theory of Concepts and Their Combinations I: The Structure of the Sets of Contexts and Properties. Kybernetes 34, 167–191 (2005)

    Article  MATH  Google Scholar 

  17. Aerts, D., Gabora, L.: A Theory of Concepts and Their Combinations II: A Hilbert Space Representation. Kybernetes 34, 192–221 (2005)

    Article  MATH  Google Scholar 

  18. Aerts, D., Czachor, M., D’Hooghe, B.: Towards a Quantum Evolutionary Scheme: Violating Bell’s Inequalities in Language. In: Gontier, N., Van Bendegem, J.P., Aerts, D. (eds.) Evolutionary Epistemology, Language and Culture - A Non Adaptationist Systems Theoretical Approach, Springer, Dordrecht (2006)

    Google Scholar 

  19. Aerts, D.: Quantum Particles as Conceptual Entities. A Possible Explanatory Framework for Quantum Theory. Foundations of Science 14, 361–411 (2009)

    MATH  Google Scholar 

  20. Aerts, D.: Quantum Structure in Cognition. J. Math. Psych. 53, 314–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aerts, D., Aerts, S., Gabora, L.: Experimental Evidence for Quantum Structure in Cognition. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 59–70. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Aerts, D., D’Hooghe, B.: Classical Logical Versus Quantum Conceptual Thought: Examples in Economy, Decision Theory and Concept Theory. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 128–142. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Aerts, D., D’Hooghe, B., Haven, E.: Quantum Experimental Data in Psychology and Economics. Int. J. Theor. Phys. 49, 2971–2990 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Aerts, D.: Quantum Interference and Superposition in Cognition: Development of a Theory for the Disjunction of Concepts (2007), Archive reference and link: http://arxiv.org/abs/0705.1740

  25. Aerts, D.: General Quantum Modeling of Combining Concepts: A Quantum Field Model in Fock Space (2007), Archive reference and link: http://arxiv.org/abs/0705.1740

  26. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  Google Scholar 

  27. Nelson, D.L., McEvoy, C.L.: Entangled Associative Structures and Context. In: Bruza, P.D., Lawless, W., van Rijsbergen, C.J., Sofge, D. (eds.) Proceedings of the AAAI Spring Symposium on Quantum Interaction. AAAI Press, Menlo Park (2007)

    Google Scholar 

  28. Bruza, P.D., Kitto, K., McEvoy, D., McEvoy, C.: Entangling Words and Meaning. In: Proceedings of the Second Quantum Interaction Symposium, pp. 118–124. Oxford University Press, Oxford (2008)

    Google Scholar 

  29. Bruza, P., Kitto, K., Nelson, D., McEvoy, C.: Extracting Spooky-Activation-at-a-Distance from Considerations of Entanglement. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 71–83. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Aerts, D.: Interpreting Quantum Particles as Conceptual Entities. Int. J. Theor. Phys. 49, 2950–2970 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tsirelson, B.S.: Quantum Generalizations of Bell’s Inequality. Lett. Math. Phys. 4, 93 (1980)

    Article  MathSciNet  Google Scholar 

  32. Aerts, D., Czachor, M.: Quantum Aspects of Semantic Analysis and Symbolic Artificial Intelligence. J. Phys. A-Math. Gen. 132, L123–L132 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aerts, D., Sozzo, S. (2011). Quantum Structure in Cognition: Why and How Concepts Are Entangled. In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds) Quantum Interaction. QI 2011. Lecture Notes in Computer Science, vol 7052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24971-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24971-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24970-9

  • Online ISBN: 978-3-642-24971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics