Skip to main content

Dimensional Reduction of High-Frequency Accelerations for Haptic Rendering

  • Conference paper
Haptics: Generating and Perceiving Tangible Sensations (EuroHaptics 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6192))

Abstract

Haptics research has seen several recent efforts at understanding and recreating real vibrations to improve the quality of haptic feedback in both virtual environments and teleoperation. To simplify the modeling process and enable the use of single-axis actuators, these previous efforts have used just one axis of a three-dimensional vibration signal, even though the main vibration mechanoreceptors in the hand are know to detect vibrations in all directions. Furthermore, the fact that these mechanoreceptors are largely insensitive to the direction of high-frequency vibrations points to the existence of a transformation that can reduce three-dimensional high-frequency vibration signals to a one-dimensional signal without appreciable perceptual degradation. After formalizing the requirements for this transformation, this paper describes and compares several candidate methods of varying degrees of sophistication, culminating in a novel frequency-domain solution that performs very well on our chosen metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, J., Bolanowski, S., Holmes, M.H.: The structure and function of Pacinian corpuscles: A review. Progress in Neurobiology 42(1), 79–128 (1994)

    Article  Google Scholar 

  2. Bensmaïa, S., Hollins, M., Yau, J.: Vibrotactile intensity and frequency information in the Pacinian system: A psychophysical model. Perception and Psychophysics 67(5), 828–841 (2005)

    Article  Google Scholar 

  3. Brisben, A.J., Hsiao, S.S., Johnson, K.O.: Detection of vibration transmitted through an object grasped in the hand. Journal of Neurophysiology 81(4), 1548–1558 (1999)

    Google Scholar 

  4. Guruswamy, V.L., Lang, J., Lee, W.S.: Modelling of haptic vibration textures with infinite-impulse-response filters. In: Proc. IEEE International Workshop on Haptic Audio Visual Environments and their Applications, pp. 105–110 (2009)

    Google Scholar 

  5. Johnson, K.O.: The roles and functions of cutaneous mechanoreceptors. Current Opinion in Neurobiology 11, 455–461 (2001)

    Article  Google Scholar 

  6. Klatzky, R.L., Lederman, S.J.: Perceiving object properties through a rigid link. In: Lin, M., Otaduy, M. (eds.) Haptic Rendering: Algorithms and Applications, ch. 1, pp. 7–19. A. K. Peters (2008)

    Google Scholar 

  7. Kontarinis, D.A., Howe, R.D.: Tactile display of vibratory information in teleoperation and virtual environments. Presence: Teleoperators and Virtual Environments 4(4), 387–402 (1995)

    Article  Google Scholar 

  8. Kuchenbecker, K.J., Fiene, J.P., Niemeyer, G.: Improving contact realism through event-based haptic feedback. IEEE Transactions on Visualization and Computer Graphics 12(2), 219–230 (2006)

    Article  Google Scholar 

  9. Kuchenbecker, K.J., Romano, J.M., McMahan, W.: Haptography: Capturing and recreating the rich feel of real surfaces. In: Proc. International Symposium on Robotics Research (August 2009)

    Google Scholar 

  10. McMahan, W., Kuchenbecker, K.J.: Haptic display of realistic tool contact via dynamically compensated control of a dedicated actuator. In: Proc. IEEE/RSJ International Conference on Intelligent RObots and Systems, pp. 3171–3177 (October 2009)

    Google Scholar 

  11. McMahan, W., Romano, J.M., Rahuman, A.M.A., Kuchenbecker, K.J.: High frequency acceleration feedback significantly increases the realism of haptically rendered textured surfaces. In: Proc. IEEE Haptics Symposium, pp. 141–148 (March 2010)

    Google Scholar 

  12. Okamura, A.M., Cutkosky, M.R., Dennerlein, J.T.: Reality-based models for vibration feedback in virtual environments. IEEE/ASME Transactions on Mechatronics 6(3), 245–252 (2001)

    Article  Google Scholar 

  13. Romano, J.M., Yoshioka, T., Kuchenbecker, K.J.: Automatic filter design for synthesis of haptic textures from recorded acceleration data. In: IEEE International Conference on Robotics and Automation, May 2010, pp. 1815–1821 (2010)

    Google Scholar 

  14. Vogels, I.M.L.C.: Detection of temporal delays in visual-haptic interfaces. Human Factors 46(1), 118–134 (2004)

    Article  Google Scholar 

  15. Yao, H.Y., Hayward, V., Ellis, R.E.: A tactile enhancement instrument for minimally invasive surgery. Computer-Aided Surgery 10(4), 233–239 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Landin, N., Romano, J.M., McMahan, W., Kuchenbecker, K.J. (2010). Dimensional Reduction of High-Frequency Accelerations for Haptic Rendering. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds) Haptics: Generating and Perceiving Tangible Sensations. EuroHaptics 2010. Lecture Notes in Computer Science, vol 6192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14075-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14075-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14074-7

  • Online ISBN: 978-3-642-14075-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics