Skip to main content

Hardness Results and Efficient Algorithms for Graph Powers

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5911))

Included in the following conference series:

Abstract

The k-th power H k of a graph H is obtained from H by adding new edges between every two distinct vertices having distance at most k in H. Lau [Bipartite roots of graphs, ACM Transactions on Algorithms 2 (2006) 178–208] conjectured that recognizing k-th powers of some graph is NP-complete for all fixed k ≥ 2 and recognizing k-th powers of a bipartite graph is NP-complete for all fixed k ≥ 3. We prove that these conjectures are true. Lau and Corneil [Recognizing powers of proper interval, split and chordal graphs, SIAM J. Discrete Math. 18 (2004) 83–102] proved that recognizing squares of chordal graphs and squares of split graphs are NP-complete. We extend these results by showing that recognizing k-th powers of chordal graphs is NP-complete for all fixed k ≥ 2 and providing a quadratic-time recognition algorithm for squares of strongly chordal split graphs. Finally, we give a polynomial-time recognition algorithm for cubes of graphs with girth at least ten. This result is related to a recent conjecture posed by Farzad et al. [Computing graph roots without short cycles, Proceedings of STACS 2009, pp. 397–408] saying that k-th powers of graphs with girth at least 3k − 1 is polynomially recognizable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, M.-S., Ko, M.-T., Lu, H.-I.: Linear-time algorithms for tree root problems. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 411–422. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Combin. 24 B, 23–30 (1987)

    MathSciNet  Google Scholar 

  3. Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43, 173–189 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Farzad, B., Lau, L.C., Le, V.B., Nguyen, N.T.: Computing graph roots without short cycles. In: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), pp. 397–408 (2009)

    Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability–A Guide to the Theory of NP-Completeness. Freeman, New York (1979); Twenty-third printing (2002)

    MATH  Google Scholar 

  6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  7. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Computing 7, 413–423 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kearney, P.E., Corneil, D.G.: Tree powers. J. Algorithms 29, 111–131 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lau, L.C.: Bipartite roots of graphs. ACM Transactions on Algorithms 2, 178–208 (2006); Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 952–961

    Article  MathSciNet  Google Scholar 

  10. Lau, L.C., Corneil, D.G.: Recognizing powers of proper interval, split and chordal graphs. SIAM J. Discrete Math. 18, 83–102 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lin, Y.-L., Skiena, S.S.: Algorithms for square roots of graphs. SIAM J. Discrete Math. 8, 99–118 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lubiw, A.: Γ-free matrices, Master Thesis, Dept. of Combinatorics and Optimization, University of Waterloo, Canada (1982)

    Google Scholar 

  13. Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Computing 16, 854–879 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Motwani, R., Sudan, M.: Computing roots of graphs is hard. Discrete Appl. Math. 54, 81–88 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Computing 16, 973–989 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Raychaudhuri, A.: On powers of strongly chordal and circular arc graphs. Ars Combin. 34, 147–160 (1992)

    MATH  MathSciNet  Google Scholar 

  17. Spinrad, J.P.: Efficient Graph Representations. Fields Institute Monographs, Toronto (2003)

    MATH  Google Scholar 

  18. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Computing 6, 505–517 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le, V.B., Nguyen, N.T. (2010). Hardness Results and Efficient Algorithms for Graph Powers. In: Paul, C., Habib, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2009. Lecture Notes in Computer Science, vol 5911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11409-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11409-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11408-3

  • Online ISBN: 978-3-642-11409-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics