Skip to main content

Veterinary Medicines and the Environment

  • Chapter
  • First Online:
Comparative and Veterinary Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 199))

Abstract

Veterinary medicines may be emitted either directly or indirectly into the environment, following its use. As veterinary medicines are biologically active compounds, there is a concern that their occurrence in the environment may have an adverse impact on aquatic and terrestrial organisms. This chapter reviews the major sources by which veterinary medicines enter the environment, the fate, behaviour and occurrence of veterinary medicines in the environment and the potential effects on environmental and human health. Finally, gaps in the current knowledge are identified and recommendations provided on priorities for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aga DS, Goldfish R, Kulshrestha P (2003) Application of ELISA in determining the fate of tetracyclines in land-applied livestock wastes. Analyst 128:658–662

    Article  PubMed  CAS  Google Scholar 

  • Björklund HV, Bylund G (1991) Comparative pharmacokinetics and bioavailability of oxolinic acid and oxytetracycline in rainbow trout (Oncorhynchus mykiss). Xenobiotica 21:1511–1520

    Article  PubMed  Google Scholar 

  • Björklund HV, Bondestam J, Bylund G (1990) Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture 86:359–367

    Article  Google Scholar 

  • Björklund HV, RÃ¥bergh CMI, Bylund G (1991) Residues of oxolinic acid and oxytetracycline in fish and sediments from fish farms. Aquaculture 97:85–96

    Article  Google Scholar 

  • Blackwell P, Boxall A, Kay P, Noble H (2005) Evaluation of a lower tier exposure assessment model for veterinary medicines. J. Agric Food Chem 53:2192–2201

    Article  PubMed  CAS  Google Scholar 

  • Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67:292–299

    Article  PubMed  CAS  Google Scholar 

  • Blackwell PA, Kay P, Ashauer R, Boxall ABA (2009) Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils. Chemosphere 75:13–19

    Article  PubMed  CAS  Google Scholar 

  • Boxall ABA (2004) The environmental side effects of medication. EMBO Rep 5:1110–1116

    Article  PubMed  CAS  Google Scholar 

  • Boxall A, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  PubMed  CAS  Google Scholar 

  • Boxall ABA, Kolpin DW, Halling-Sorensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 37:286A

    Article  PubMed  CAS  Google Scholar 

  • Boxall A, Fogg L, Baird D, Telfer T, Lewis C, Gravell A, Boucard T (2006a) Targeted monitoring study for veterinary medicines. Environment Agency R&D Technical Report, Bristol, UK, Environment Agency

    Google Scholar 

  • Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006b) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54:2288–2297

    Article  PubMed  CAS  Google Scholar 

  • Brain RA, Hansen ML, Solomon KR, Brooks BW (2008) Aquatic plants exposed to pharmaceuticals: Effects and risks. Rev Environ Contam Toxicol 192:67–115

    Article  PubMed  CAS  Google Scholar 

  • Breton R, Boxall A (2003) Pharmaceuticals and personal care products in the environment: regulatory drivers and research needs. QSAR Comb Sci 22:399–409

    Article  CAS  Google Scholar 

  • Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors and the parachor. J Agric Food Chem 29:1050–1059

    Article  CAS  Google Scholar 

  • Burken J, Schnoor J (1998) Predictive relationships for uptake of organic contaminants by hybrid polar tress. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Burkhard M, Stamm S, Waul C, Singer H, Muller S (2005) Surface runoff and transport of sulfonamide antibiotics on manured grassland. J Environ Qual 34:1363–1371

    Article  CAS  Google Scholar 

  • Cannavan A, Coyne R, Kennedy DG, Smith P (2000) Concentration of 22, 23-dihydroavermectin B1a detected in the sediments at an Atlantic salmon farm using orally administered ivermectin to control sea-lice infestation. Aquaculture 182:229–240

    Article  CAS  Google Scholar 

  • Capone DG, Weston DP, Miller V, Shoemaker C (1996) Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145:55–75

    Article  CAS  Google Scholar 

  • Carlson JC, Mabury SA (2006) Dissipation kinetics and mobility of chlortetracycline, tylosin, and monensin in an agricultural soil in Northumberland County, Ontario, Canada. Environ Toxicol Chem 25:1–10

    Article  PubMed  CAS  Google Scholar 

  • Coyne R, Hiney M, O’Connor B, Kerry J, Cazabon D, Smith P (1994) Concentration and persistence of oxytetracycline in sediments under a marine salmon farm. Aquaculture 123:31–42

    Article  CAS  Google Scholar 

  • CVMP (2007) CVMP (Committee for medicinal products for veterinary use) guideline of environmental impact assessment for veterinary medicinal products, EMEA/CVMP/ERA/4182/2005-corr

    Google Scholar 

  • De Knecht J, Boucard T, Brooks B, Crane M, Eirkson C, Gerould S, Koschorreck J, Scheef G, Solomon KR, Yan Z (2009) Environmental risk assessment and management of veterinary medicines. In: Crane M, Boxall ABA, Barrett K (eds) Veterinary medicines in the environment. CRC, Boca Raton, pp 21–55

    Google Scholar 

  • Ervik A, Thorsen B, Eriksen V, Lunestad BT, Samuelsen OB (1994) Impact of administering antibacterial agents on wild fish and blue mussels Mytilus edulis in the vicinity of fish farms. Dis Aquat Org 18:45–51

    Article  CAS  Google Scholar 

  • Floate KD (1998) Off-target effects of ivermectin on insects and on dung degradationin southern Alberta, Canada. Bull Entomol Res 88:25–35

    Article  CAS  Google Scholar 

  • Floate K, Wardaugh K, Boxall ABA, Sherratt T (2005) Faecal residues of veterinary parasiticides: Non-target effects in the pasture environment. Annu Rev Entomol 50:153–179

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson TJ, Hornish RE, Jaglan PS, Koshy KT, Stahl NJL, GL CAR, Nappier JM, Kubicek MF, Hoffman GA, Hamlow PJ (1990) Environmental fate of ceftiofur sodium, a cephalosporin antibiotic: Role of animal excreta in its decomposition. J Agric Food Chem 38:890–894

    Article  CAS  Google Scholar 

  • Halling-Sørenson B (1999) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739

    Article  Google Scholar 

  • Halling-Sørenson B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effect of pharmaceutical substances in the environment- a review. Chemosphere 36:357–393

    Article  Google Scholar 

  • Hamscher G, Abu-Quare A, Sczesny S, Höper H, Nau H (2000a) Determination of tetracyclines and tylosin in soil and water samples from agricultural areas in lower Saxony. In: van Ginkel LA, Ruiter A (eds) Proceedings of the Euroresidue IV conference, Veldhoven, Netherlands, pp 8–10 May 2000. Bilthoven, National Institute of Public Health and the Environment (RIVM)

    Google Scholar 

  • Hamscher G, Sczesny S, Abu-Quare A, Höper H, Nau H (2000b) Substances with pharmacological effects including hormonally active substances in the environment: Identification of tetracyclines in soil fertilised with animal slurry. Dtsch Tierärztl Wochenschr 107:293–348

    Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2000c) Tetracycline and chlortetracycline residues in soil fertilized with liquid manure. In: Hartung J, Wathes C(eds) Livestock farming and the environment, Sonderheft 226, Braunschweig, Germany, pp 27–31

    Google Scholar 

  • Hamscher G, Pawelzick HT, Hoper H, Nau H (2005) Different behaviour of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868

    Article  PubMed  CAS  Google Scholar 

  • Hektoen H, Berge JA, Hormazabal V, Yndestad M (1995) Persistence of antibacterial agents in marine sediments. Aquaculture 133:175–184

    Article  CAS  Google Scholar 

  • Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Eviron Microbiol 9:657–666

    CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    Article  PubMed  CAS  Google Scholar 

  • Holm JV, Berg PL, Rugge K, Christensen TH (1995) Occurrence and distribution of pharmaceutical organic-compounds in the groundwater down gradient of a landfill (Grinsted, Denmark). Environ Sci Technol 29:1415–1420

    Article  CAS  Google Scholar 

  • Hughes J, Stutt E, Capleton AC, Holmes P, Boxall A, Johnson J, Mongan L, James K, Shuker L, Levy LS (2006) Evaluation of the potential risks to consumers from indirect exposure to veterinary medicines. IEH Final Report to Defra

    Google Scholar 

  • Hustvedt SO, Salte R, Kvendseth O, Vassvik V (1991) Bioavailability of oxolinic acid in Atlantic salmon (Salmo salar L) from medicated feed. Aquaculture 97:305–310

    Article  CAS  Google Scholar 

  • Ingerslev F, Halling-Sørensen B (2001) Biodegradability of metronidazole, olaquindox and tylosin and formation of tylosin degradation products in aerobic soil/manure slurries. Chemosphere 48:311–320

    CAS  Google Scholar 

  • Jacobsen P, Berglind L (1988) Persistence of oxytetracycline in sediments from fish farms. Aquaculture 70:365–370

    Article  CAS  Google Scholar 

  • Jones AD, Bruland GL, Agrawal SG, Vasudevan D (2005) Factors influencing the sorption of oxytetracycline to soils. Environ Toxicol Chem 24:761–770

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen SE, Halling-Sørensen B (2000) Drugs in the environment. Chemosphere 40:691–699

    Article  PubMed  Google Scholar 

  • Kay P, Blackwell P, Boxall A (2004) Fate of veterinary antibiotics in a macroporous drained clay soil. Environ Toxicol Chem 23:1136–1144

    Article  PubMed  CAS  Google Scholar 

  • Kay P, Blackwell PA, Boxall ABA (2005a) Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land. Chemosphere 60:497–507

    Article  PubMed  CAS  Google Scholar 

  • Kay P, Blackwell PA, Boxall ABA (2005b) A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data. Environ Pollut 134:333–341

    Article  PubMed  CAS  Google Scholar 

  • Kay P, Blackwell PA, Boxall ABA (2005c) Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere 59:951–959

    Article  PubMed  CAS  Google Scholar 

  • Kerry J, Coyne R, Gilroy D, Hiney M, Smith P (1996) Spatial distribution of oxytetracycline and elevated frequencies of oxytetracycline resistance in sediments beneath a marine salmon farm following oxytetracycline therapy. Aquaculture 145:31–39

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams 1999–2000: A national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  PubMed  CAS  Google Scholar 

  • Kolz AC, Moorman TB, Ong SK, Scoggin KD, Douglass EA (2005) Degradation and metabolite production of tylosin in anaerobic and aerobic swine-manure lagoons. Water Environ Res 77:49–56

    Article  PubMed  CAS  Google Scholar 

  • Kreuzig R, Holtge S (2005) Investigations on the fate of sulfadiazine in manured soil: Laboratory experiments and test plot studies. Environ Toxicol Chem 24:771–776

    Article  PubMed  CAS  Google Scholar 

  • Kreuzig R, Holtge S, Brunotte J, Berenzen N, Wogram J, Sculz R (2005) Test-plot studies on runoff of sulfonamides from manured soils after sprinkler irrigation. Environ Toxicol Chem 24:777–781

    Article  PubMed  CAS  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2085

    Article  PubMed  CAS  Google Scholar 

  • Lai HT, Liu SM, Chien YH (1995) Transformation of chloramphenicol and oxytetracycline in aquaculture pond sediments. J Environ Sci Health A 30:1897–1923

    Article  Google Scholar 

  • Laville N, Ait-Aissa S, Gomez E, Casellas C, Porcher JM (2004) Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology 196:41–55

    Article  PubMed  CAS  Google Scholar 

  • Loke ML, Ingerslev F, Halling-Sorensen B, Tjornelund J (2000) Stability of tylosin A in manure containing test systems determined by high performance liquid chromatography. Chemosphere 40:759–765

    Article  PubMed  CAS  Google Scholar 

  • Lunestad BT, Samuelsen OB, Fjelde S, Ervik A (1995) Photostability of eight antibacterial agents in seawater. Aquaculture 134:217–225

    Article  CAS  Google Scholar 

  • Madsen M, Overgaard Nielsen B, Holter P, Pedersen OC, Brrochner Jespersen J, Vagn Jensen K-M, Nansen P, Gronvold J (1990) Treating cattle with ivermectins: Effects on fauna and decomposition of dung pats. J Appl Ecol 27:1–15

    Article  Google Scholar 

  • Markandya A, Taylor T, Longo A, Murty MN, Murty S, Dhavala K (2008) Counting the cost of vulture decline – An appraisal of the human health and other benefits of vultures in India. Ecol Econ 67:194–204

    Article  Google Scholar 

  • McCracken DI (1993) The potential for avermectins to affect wildlife. Vet Parasitol 48:273–280

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe C, Boxall A, Fenner K, Kolpin D, Servos M, Silberhorn E, Staveley J (2009) Exposure assessment of veterinary medicines in aquatic systems. In: Crane M, Boxall ABA, Barrett K (eds) Veterinary medicines in the environment. CRC, Boca Raton, pp 57–96

    Google Scholar 

  • Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244

    Article  PubMed  CAS  Google Scholar 

  • Montforts MHMM (1999) Environmental risk assessment for veterinary medicinal products. Part 1: other than GMO-containing and immunological products. RIVM Report 601300001, RIVM, Bilthoven, The Netherlands

    Google Scholar 

  • Monteiro SC, Boxall ABA (2009) Factors affecting the degradation of pharmaceuticals in agricultural soils. Environ Toxicol Chem 28(12):2546–2554

    Article  PubMed  CAS  Google Scholar 

  • Nessel RJ, Wallace DH, Wehner TA, Tait WE, Gomez L (1989) Environmental fate of ivermectin in a cattle feedlot. Chemosphere 18:1531–1541

    Article  CAS  Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJI, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633

    Article  PubMed  CAS  Google Scholar 

  • Pomati F, Netting AG, Calamari D, Neilan BA (2004) Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp and Lemna minor. Aquat Toxicol 67:387–396

    Article  PubMed  CAS  Google Scholar 

  • Pope L, Boxall ABA, Corsing C, Halling Sorense B, Tait A, Topp E (2009) Exposure assessment of veterinary medicines in terrestrial systems. In: Crane M, Boxall ABA, Barrett K (eds) Veterinary medicines in the environment. CRC, Boca Raton, pp 129–153

    Google Scholar 

  • Pouliquen H, Le Bris H, Pinault L (1992) Experimental study of the therapeutic application of oxytetracycline, its attenuation in sediment and sea water, and implication for farm culture of benthic organisms. Mar Ecol Prog Ser 89:93–98

    Article  CAS  Google Scholar 

  • Ridsdill-Smith TJ (1993) Effects of avermectin residues in cattle dung on dung beetle (Coleoptera: Scarabaeidae) reproduction and survival. Vet Parasitol 48:127–137

    Article  PubMed  CAS  Google Scholar 

  • Samuelsen OB (1989) Degradation of oxytetracycline in seawater at two different temperatures and light intensities and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture 83:7–16

    Article  CAS  Google Scholar 

  • Samuelsen OB, Solheim E, Lunestad BT (1991) Fate and microbiological effects of furazolidone in a marine aquaculture sediment. Sci Total Environ 108:275–283

    Article  PubMed  CAS  Google Scholar 

  • Samuelsen OB, Lunestad BT, HusevÃ¥g B, Hølleland T, Ervik A (1992a) Residues of oxolinic acid in wild fauna following medication in fish farms. Dis Aquat Org 12:111–119

    Article  CAS  Google Scholar 

  • Samuelsen OB, Torsvik V, Ervik A (1992b) Long-range changes in oxytetracycline concentration and bacterial resistance towards oxytetracycline in a fish farm sediment after medication. Sci Total Environ 114:25–36

    Article  PubMed  CAS  Google Scholar 

  • Samuelsen OB, Lunestad BT, Ervik A, Fjelde S (1994) Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture 126:283–290

    Article  CAS  Google Scholar 

  • Sanderson H, Laird B, Pope L, Brain R, Wilson C, Johnson D, Peregrine A, Bryning G, Boxall A, Solomon K (2007) Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. Aquat Toxicol 85:229–240

    Article  PubMed  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  PubMed  CAS  Google Scholar 

  • Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: Assessing the role of pH and cation exchange. Environ Sci Technol 39:7452–7459

    Article  PubMed  CAS  Google Scholar 

  • Schallenberg M, Armstrong A (2004) Assessment of antibiotic activity in surface water of the lower Taieri Plain and impacts on aquatic bacteria in Lake Waipori, South Otago, New Zealand. NZ J Mar Freshwater Res 38:19–28

    Article  CAS  Google Scholar 

  • Schmidt CD (1983) Activity of an avermectin against selected insects in aging manure. Environ Entomol 12:455–457

    Google Scholar 

  • Sengelov G, Agerso Y, Halling Sorensen B, Baloda SB, Andersen JS, Jensen LB (2003) Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28:587–595

    Article  PubMed  CAS  Google Scholar 

  • Sommer C, Bibby BM (2002) The influence of veterinary medicines on the decomposition of dung organic matter in soil. Eur J Soil Biol 38:155–159

    Article  CAS  Google Scholar 

  • Sommer C, Steffansen B, Overgaard Nielsen B, Grønvold J, Kagn-Jensen KM, Brøchner Jespersen J, Springborg J, Nansen P (1992) Ivermectin excreted in cattle dung after sub-cutaneous injection or pour-on treatment: Concentrations and impact on dung fauna. Bull Entomol Res 82:257–264

    Article  CAS  Google Scholar 

  • Sommer C, Gronvold J, Holter P, Nansen P (1993) Effect of ivermectin on two afrotropical beetles Onthophagus gazella and Diastellopalpus quinquedens (Coleoptera: Scarabaeidae). Vet Parasitol 48:171–179

    Article  PubMed  CAS  Google Scholar 

  • Stoob K, Singer HP, Mueller SR, Schwarzenbach RP, Stamm CH (2007) Dissipation and transport of veterinary sulphonamide antibiotics after manure application to grassland in a small catchment. Environ Sci Technol 41:7349–7355

    Article  PubMed  CAS  Google Scholar 

  • Strock TJ, Sassman SA, Lee LS (2005) Sorption and related properties of the swine antibiotic carbadox and associated n-oxide reduced metabolites. Environ Sci Technol 39:3134–3142

    Article  PubMed  CAS  Google Scholar 

  • Strong L (1993) Overview: The impact of avermectins on pastureland ecology. Vet Parasitol 48:3–17

    Article  PubMed  CAS  Google Scholar 

  • Strong L, Brown TA (1987) Avermectins in insect control and biology: A review. Bull Entomol Res 77:357–389

    Article  CAS  Google Scholar 

  • Strong L, James S (1993) Some effects of ivermectin on the yellow dung fly, Scatophaga stercoraria. Vet Parasitol 48:181–191

    Article  PubMed  CAS  Google Scholar 

  • Strong L, Wall R (1994) Effects of ivermectin and moxidectin on the insects of cattle dung. Bull Entomol Res 84:403–409

    Article  CAS  Google Scholar 

  • Teeter JS, Meyerhoff RD (2003) Aerobic degradation of tylosin in cattle, chicken and swine excreta. Environ Res 93:45–51

    Article  PubMed  CAS  Google Scholar 

  • Ter Laak TL, Gebbink WA, Tolls J (2006a) Estimation of sorption coefficients of veterinary medicines from soil properties. Environ Toxicol Chem 25:933–941

    Article  PubMed  Google Scholar 

  • Ter Laak TL, Gebbink WA, Tolls J (2006b) The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin and oxytetracycline to soil. Environ Toxicol Chem 25:904–911

    Article  PubMed  Google Scholar 

  • Thiele Bruhn S, Aust M (2004) Effects of pig slurry on the sorption of antibiotics in soil. Arch Environ Contam Toxicol 47:31–39

    Article  PubMed  CAS  Google Scholar 

  • US EPA (1997) Profile of the pharmaceutical manufacturing industry. EPA/310-R-97-005, US EPA Office of Compliance, Washington, DC

    Google Scholar 

  • Velagaleti R, Burns PK, Gill M, Prothro J (2002) Impact of current good manufacturing practices and emission regulations and guidances on the discharge of pharmaceutical chemicals into the environment from manufacturing, use, and disposal. Environ Health Perspect 110:213–220

    Article  PubMed  Google Scholar 

  • Wall R, Strong L (1987) Environmental consequences of treating cattle with the antiparasitic drug ivermectin. Nature 327:418–421

    Article  PubMed  CAS  Google Scholar 

  • Westergaard K, Muller AK, Christensen S, Bloem J, Sorensen SJ (2001) Effects of tylosin as a disturbance on the soil microbial community. Soil Biol Biochem 33:2061–2071

    Article  CAS  Google Scholar 

  • Wolters A, Steffens M (2005) Photodegradation of antibiotics on soil surfaces: laboratory studies on sulfadiazine in an ozone-controlled environment. Environ Sci Technol 39:6071–6078

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair B. A. Boxall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boxall, A.B.A. (2010). Veterinary Medicines and the Environment. In: Cunningham, F., Elliott, J., Lees, P. (eds) Comparative and Veterinary Pharmacology. Handbook of Experimental Pharmacology, vol 199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10324-7_12

Download citation

Publish with us

Policies and ethics