Skip to main content

HAPLO-ASP: Haplotype Inference Using Answer Set Programming

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5753))

Abstract

Identifying maternal and paternal inheritance is essential to be able to find the set of genes responsible for a particular disease. However, due to technological limitations, we have access to genotype data (genetic makeup of an individual), and determining haplotypes (genetic makeup of the parents) experimentally is a costly and time consuming procedure. With these biological motivations, we study haplotype inference—determining the haplotypes that form a given set of genotypes—using Answer Set Programming; we call our approach Haplo-ASP. This note summarizes the range of problems that can be handled by Haplo-ASP, and its applicability and effectiveness on real data in comparison with the other existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsimony: Complexity of exact and approximation algorithms. INFORMS Journal on Computing 16(4), 348–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brown, D., Harrower, I.: Integer programming approaches to haplotype inference by pure parsimony. IEEE/ACM Transactions on Bioinformatics and Computational Biology 3, 348–359 (2006)

    Article  Google Scholar 

  4. Wang, L., Xu, Y.: Haplotype inference by maximum parsimony. Bioinformatics 19(14), 1773–1780 (2003)

    Article  Google Scholar 

  5. Lynce, I., Marques-Silva, J.: Efficient haplotype inference with boolean satisfiability. In: AAAI (2006)

    Google Scholar 

  6. Graça, A., Marques-Silva, J.P., Lynce, I., Oliveira, A.: Efficient haplotype inference with pseudo-boolean optimization. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 125–139. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Yoo, Y.J., Tang, J., Kaslow, R.A., Zhang, K.: Haplotype inference for present absent genotype data using previously identified haplotypes and haplotype patterns. Bioinformatics 23(18), 2399–2406 (2007)

    Article  Google Scholar 

  8. Erdem, E., Ture, F.: Efficient haplotype inference with answer set programming. In: Proc. of AAAI (2008)

    Google Scholar 

  9. Neigenfind, J., Gyetvai, G., Basekow, R., Diehl, S., Achenbach, U., Gebhardt, C., Selbig, J., Kersten, B.: Haplotype inference from unphased snp data in heterozygous polyploids based on sat. BMC Genomics 9(1), 356 (2008)

    Article  Google Scholar 

  10. Hsu, K.C., Chida, S., Geraghty, D.E., Dupont, B.: The killer cell immunoglobulin-like receptor (kir) genomic region: gene-order, haplotypes and allelic polymorphism. Immunological Reviews 190(1), 40–52 (2002)

    Article  Google Scholar 

  11. Pajerowska-Mukhtar, K., Stich, B., Achenbach, U., Ballvora, A., Lübeck, J., Strahwald, J., Tacke, E., Hofferbert, H.R., Ilarionova, E., Bellin, D., Walkemeier, B., Basekow, R., Kersten, B., Gebhardt, C.: Single nucleotide polymorphisms in the allene oxide synthase 2 gene are associated with field resistance to late blight in populations of tetraploid potato cultivars. Genetics 181, 1115–1127 (2009)

    Article  Google Scholar 

  12. Hudson, R.: Generating samples under a wrightfisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erdem, E., Erdem, O., Türe, F. (2009). HAPLO-ASP: Haplotype Inference Using Answer Set Programming. In: Erdem, E., Lin, F., Schaub, T. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2009. Lecture Notes in Computer Science(), vol 5753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04238-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04238-6_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04237-9

  • Online ISBN: 978-3-642-04238-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics