Skip to main content

Visualization-Driven Structural and Statistical Analysis of Turbulent Flows

  • Conference paper
Advances in Intelligent Data Analysis VIII (IDA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5772))

Included in the following conference series:

Abstract

Knowledge extraction from data volumes of ever increasing size requires ever more flexible tools to facilitate interactive query. Interactivity enables real-time hypothesis testing and scientific discovery, but can generally not be achieved without some level of data reduction. The approach described in this paper combines multi-resolution access, region-of-interest extraction, and structure identification in order to provide interactive spatial and statistical analysis of a terascale data volume. Unique aspects of our approach include the incorporation of both local and global statistics of the flow structures, and iterative refinement facilities, which combine geometry, topology, and statistics to allow the user to effectively tailor the analysis and visualization to the science. Working together, these facilities allow a user to focus the spatial scale and domain of the analysis and perform an appropriately tailored multivariate visualization of the corresponding data. All of these ideas and algorithms are instantiated in a deployed visualization and analysis tool called VAPOR, which is in routine use by scientists internationally. In data from a 10243 simulation of a forced turbulent flow, VAPOR allowed us to perform a visual data exploration of the flow properties at interactive speeds, leading to the discovery of novel scientific properties of the flow, in the form of two distinct vortical structure populations. These structures would have been very difficult (if not impossible) to find with statistical overviews or other existing visualization-driven analysis approaches. This kind of intelligent, focused analysis/refinement approach will become even more important as computational science moves towards petascale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, K.J., Davis, K., Hoisie, A., Kerbyson, D.J., Lang, M., Pakin, S., Sancho, J.C.: Entering the petaflop era: the architecture and performance of roadrunner. In: 2008 ACM/IEEE conference on Supercomputing, Austin, Texas, pp. 1–11. IEEE Press, Los Alamitos (2008)

    Google Scholar 

  2. Keim, D., Ward, M.: Visualization. In: Berthold, M., Hand, D. (eds.) Intelligent Data Analysis: An Introduction, 2nd edn. Springer, Heidelberg (2000)

    Google Scholar 

  3. Yang, L.: 3D grand tour for multidimensional data and clusters. In: Hand, D.J., Kok, J.N., R. Berthold, M. (eds.) IDA 1999. LNCS, vol. 1642, pp. 173–184. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Rehm, F., Klawonn, F., Kruse, R.: Mds-polar: A new approach for dimension reduction to visualize high-dimensional data. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 316–327. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Clyne, J.: The multiresolution toolkit: Progressive access for regular gridded data, 152–157 (2003)

    Google Scholar 

  6. Clyne, J., Mininni, P.D., Norton, A., Rast, M.: Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New Journal of Physics 9 (2007)

    Google Scholar 

  7. Lorensen, B.: On the death of visualization. In: NIH/NSF Fall 2004 Workshop Visualization Research Challenges (2004)

    Google Scholar 

  8. Ahrens, J., Brislawn, K., Martin, K., Geveci, B., Law, C.C., Papka, M.: Large-scale data visualization using parallel data streaming. IEEE Computer Graphics and Applications 21, 34–41 (2001)

    Article  Google Scholar 

  9. Childs, H., Brugger, E., Bonnell, K., Meredith, J., Miller, M., Whitlock, B., Max, N.: A contract based system for large data visualization. In: Proceedings of IEEE Visualization, pp. 191–198 (2005)

    Google Scholar 

  10. Engel, K., Hadwiger, M., Kniss, J.M., Lefohn, A.E., Salama, C.R., Weiskopf, D.: Real-time volume graphics. A K Peters, Ltd., Los Angeles (2006)

    Book  Google Scholar 

  11. Weiskopf, D., Erlebacher, G.: Overview of flow visualization. In: Hansen, C., Johnson, C. (eds.) Visualization Handbook. Academic Press, London (2005)

    Google Scholar 

  12. Clyne, J., Rast, M.: A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations. In: Erbacher, R.F., Roberts, J.C., Grohn, M.T., Borner, K. (eds.) Visualization and Data Analysis 2005. SPIE, San Jose, CA, USA, March 2005, vol. 5669, pp. 284–294 (2005)

    Google Scholar 

  13. Suzuki, K., Horibia, I., Sugie, N.: Linear-time connected-component labeling based on sequential local operations. Computer Vision and Image Understanding 89, 1–23 (2003)

    Article  MATH  Google Scholar 

  14. Mininni, P.D., Alexakis, A., Pouquet, A.: Nonlocal interactions in hydrodynamic turbulence at high reynolds numbers: the slow emergence of scaling laws. Physical review. E, Statistical, nonlinear, and soft matter physics 77 (2008)

    Google Scholar 

  15. Jiang, M., Machiraju, R., Thompson, D.: Detection and visualization of vortices. In: Hansen, C., Johnson, C. (eds.) Visualization Handbook. Academic Press, London (2005)

    Google Scholar 

  16. Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vorticity and Vortex Dynamics, 1st edn. Springer, Heidelberg (2006)

    Book  Google Scholar 

  17. Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., Uno, A.: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Physics of Fluids 15, L21–L24 (2003)

    Article  MATH  Google Scholar 

  18. Leadership-class system acquisition - creating a petascale computing environment for science and engineering NSF solicitation 06-573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gruchalla, K., Rast, M., Bradley, E., Clyne, J., Mininni, P. (2009). Visualization-Driven Structural and Statistical Analysis of Turbulent Flows. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, JF. (eds) Advances in Intelligent Data Analysis VIII. IDA 2009. Lecture Notes in Computer Science, vol 5772. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03915-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03915-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03914-0

  • Online ISBN: 978-3-642-03915-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics