Skip to main content

Gibbs Motif Sampler, Weight Matrix and Artificial Neural Network for the Prediction of MHC Class-II Binding Peptides

  • Conference paper
Contemporary Computing (IC3 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 40))

Included in the following conference series:

Abstract

The identification of MHC class-II restricted epitope is an important goal in peptide based vaccine and diagnostic development. In the present study, we discuss the applications of Gibbs motif sampler, weight matrix and artificial neural network for the prediction of peptide binding to sixteen MHC class-II molecules of human and mouse. The average prediction performances of sixteen MHC class-II molecules in terms of Aroc, based on Gibbs motif sampler, sequence weighting and artificial neural network are 0.56, 0.55 and 0.51 respectively. However, further improvements in the performance of software tools for prediction of MHC class-II binding peptide based on various methods largely depends on the size of training and validation datasets and the correct identification of the peptide binding core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cresswell, P.: Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 12, 259–293 (1994)

    Article  CAS  PubMed  Google Scholar 

  2. Peters, B., Sette, A.: Integrating epitope data into the emerging web of biomedical knowledge resources. Nat. Rev. Immunol. 7, 485–490 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. Stern, L.J., Brown, J.H., Jardetzky, T.S., Gorga, J.C., Urban, R.G., et al.: Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368, 215–221 (1994)

    Article  CAS  PubMed  Google Scholar 

  4. Jones, E.Y., Fugger, L., Strominger, J.L., Siebold, C.: MHC class II proteins and disease: a structural perspective. Nat. Rev. Immunol. 6, 271–282 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. Godkin, A.J., Smith, K.J., Willis, A., Tejada-Simon, M.V., Zhang, J., et al.: Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions. J. Immunol. 166, 6720–6727 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Rammensee, H., Bachmann, J., Emmerich, N., Bachor, O., Stevanovic, S.: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Bhasin, M., Singh, H., Raghava, G.P.: MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19, 665–666 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Toseland, C.P., Clayton, D.J., McSparron, H., Hemsley, S.L., Blythe, M.J., et al.: AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res. 1, 4 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reche, P.A., Zhang, H., Glutting, J.-P., Reinherz, E.L.: EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics 21(9), 2140–2141 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Peters, B., Sidney, J., Bourne, P., Bui, H.H., Buus, S., et al.: The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol. 3, 91 (2005)

    Article  Google Scholar 

  11. Hammer, J., Bono, E., Gallazzi, F., Belunis, C., Nagy, Z., et al.: Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J. Exp. Med. 180, 2353–2358 (1994)

    Article  CAS  PubMed  Google Scholar 

  12. Reche, P.A., Glutting, J.-P., Reinherz, E.L.: Prediction of MHC Class I Binding Peptides Using Profile Motifs. Human Immunology 63, 701–709 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. Mamitsuka, H.: Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins 33(4), 460–474 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Donnes, P., Elofsson, A.: Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 3(1), 25 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Honeyman, M.C., Brusic, V., Stone, N.L., Harrison, L.C.: Neural network-based prediction of candidate T-cell epitopes. Nat. Biotechnol. 16, 966–969 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Bui, H.H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., et al.: Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57, 304–314 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. Nielsen, M., Lundegaard, C., Lund, O.: Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 8, 238 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nielsen, M., Lundegaard, C., Worning, P., Hvid, C.S., Lamberth, K., Buus, S., Brunak, S., Lund, O.: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 20, 1388–1397 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nielsen, M., Lundegaard, C., Worning, P., Lauemøller, S.L., Lamberth, K., Buus, S., Brunak, S., Lund, O.: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12(5), 1007–1017 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, P., Sidney, J., Dow, C., Mothé, B., Sette, A., et al.: A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach. PLoS Comput. Biol. 4(4), e1000048 (2008)

    Article  Google Scholar 

  22. Hobohm, U., Scharf, M., Schneider, R., Sander, C.: Selection of representative protein data sets. Protein Sci. 1(3), 409–417 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh, S.P., Mishra, B.N.: Prediction of MHC binding peptide using Gibbs motif sampler, weight matrix and artificial neural network. Bioinformation 3(4), 150–155 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Singh, S.P., Mishra, B.N.: Ranking of binding and nonbinding peptides to MHC class–I molecules using inverse folding approach: Implications for vaccine design. Bioinformation 3(2), 72–82 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Singh, S.P., Mishra, B.N. (2009). Gibbs Motif Sampler, Weight Matrix and Artificial Neural Network for the Prediction of MHC Class-II Binding Peptides. In: Ranka, S., et al. Contemporary Computing. IC3 2009. Communications in Computer and Information Science, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03547-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03547-0_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03546-3

  • Online ISBN: 978-3-642-03547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics