Skip to main content

Square-Wave Voltammetry

  • Chapter
  • First Online:
Electroanalytical Methods

Abstract

Square-wave voltammetry (SWV) is one of the four major voltammetric techniques provided by modern computer-controlled electroanalytical instruments, such as Autolab and μAutolab (both EcoChemie, Utrecht), BAS 100 A (Bioanalytical Systems), and PAR Model 384 B (Princeton Applied Research) [1]. The other three important techniques are single scan and cyclic staircase, pulse, and differential pulse voltammetry (see Chap. II.2). All four are either directly applied or after a preconcentration to record the stripping process. The application of SWV boomed in the last decade, first because of the widespread use of the instruments mentioned above, second because of a well-developed theory, and finally, and most importantly, because of its high sensitivity to surface-confined electrode reactions. Adsorptive stripping SWV is the best electroanalytical method for the determination of electroactive organic molecules that are adsorbed on the electrode surface [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Autolab, Installation guide, EcoChemie BV, Utrecht, 1993; BAS 100A, Operation guide, Bioanalytical Systems, West Lafayette, 1987; Model 384 B, Operating manual, EG & G Princeton Applied Research, Princeton, 1983

    Google Scholar 

  2. Mirčeski V, Komorsky-Lovrić Š, Lovrić M (2007) Square-Wave Voltammetry. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. de Souza D, Machado SAS, Avaca LA (2003) Quim Nova 26: 81

    CAS  Google Scholar 

  4. de Souza D, Codognoto L, Malagutti AR, Toledo RA, Pedrosa VA, Oliveira RTS, Mazo LH, Avaca LA, Machado SAS (2004) Quim Nova 27: 790

    Google Scholar 

  5. Osteryoung JG, Osteryoung RA (1985) Anal Chem 57: 101A

    CAS  Google Scholar 

  6. Osteryoung J, O’Dea JJ (1986) Square-wave voltammetry. In: Bard AJ (ed) Electro analytical chemistry, vol 14. Marcel Dekker, New York, p 209

    Google Scholar 

  7. Eccles GN (1991) Crit Rev Anal Chem 22: 345

    CAS  Google Scholar 

  8. Kalousek M (1948) Collect Czech Chem Commun 13: 105

    CAS  Google Scholar 

  9. Barker GC, Jenkins IL (1952) Analyst 77: 685

    CAS  Google Scholar 

  10. Barker GC (1958) Anal Chim Acta 18: 118

    CAS  Google Scholar 

  11. Ishibashi M, Fujinaga T (1952) Bull Chem Soc Jpn 25: 68

    CAS  Google Scholar 

  12. Kinard WF, Philp RH, Propst RC (1967) Anal Chem 39: 1557

    Google Scholar 

  13. Radej J, Ružić I, Konrad D, Branica M (1973) J Electroanal Chem 46: 261

    CAS  Google Scholar 

  14. Barker GC, Gardner AW, Williams MJ (1973) J Electroanal Chem 42: App. 21

    Google Scholar 

  15. Kalvoda R, Holub I (1973) Chem Listy 67: 302

    CAS  Google Scholar 

  16. Igolinski VA, Kotova NA (1973) Elektrokhimiya 9: 1878

    Google Scholar 

  17. Ramaley L, Krause MS Jr (1969) Anal Chem 41: 1362

    CAS  Google Scholar 

  18. Krause MS Jr, Ramaley L (1969) Anal Chem 41: 1365

    CAS  Google Scholar 

  19. Christie JH, Turner JA, Osteryoung RA (1977) Anal Chem 49: 1899

    CAS  Google Scholar 

  20. Ramaley L, Surette DP (1977) Chem Instrum 8: 181

    CAS  Google Scholar 

  21. Buchanan EB Jr, Sheleski WJ (1980) Talanta 27: 955

    CAS  Google Scholar 

  22. Yarnitzky C, Osteryoung RA, Osteryoung J (1980) Anal Chem 52: 1174

    CAS  Google Scholar 

  23. Anderson JA, Bond AM (1983) Anal Chem 55: 1934

    CAS  Google Scholar 

  24. Lavy-Feder A, Yarnitzky C (1984) Anal Chem 56: 678

    Google Scholar 

  25. Jayaweera P, Ramaley L (1986) Anal Instrum 15: 259

    CAS  Google Scholar 

  26. Wong KH, Osteryoung RA (1987) Electrochim Acta 32: 629

    CAS  Google Scholar 

  27. Ramaley L, Tan WT (1981) Can J Chem 59: 3326

    CAS  Google Scholar 

  28. Fatouros N, Simonin JP, Chevalet J, Reeves RM (1986) J Electroanal Chem 213: 1

    CAS  Google Scholar 

  29. Chen X, Pu G (1987) Anal Lett 20: 1511

    CAS  Google Scholar 

  30. Krulic D, Fatouros N, Chevalet J (1990) J Electroanal Chem 287: 215

    CAS  Google Scholar 

  31. Aoki K, Maeda K, Osteryoung J (1989) J Electroanal Chem 272: 17

    CAS  Google Scholar 

  32. Lovrić M (1995) Croat Chem Acta 68: 335

    Google Scholar 

  33. Krulic D, Fatouros N, El Belamachi MM (1995) J Electroanal Chem 385: 33

    Google Scholar 

  34. Molina A, Serna C, Camacho L (1995) J Electroanal Chem 394: 1

    Google Scholar 

  35. Brookes BA, Ball JC, Compton RG (1999) J Phys Chem B 103: 5289

    CAS  Google Scholar 

  36. Zachowski EJ, Wojciechowski M, Osteryoung J (1986) Anal Chim Acta 183: 47

    CAS  Google Scholar 

  37. Lovrić M (1994) Annali Chim 84: 379

    Google Scholar 

  38. O’Dea JJ, Osteryoung J, Osteryoung RA (1981) Anal Chem 53: 695

    Google Scholar 

  39. Elsner CI, Rebollo NL, Dgli WA, Marchiano SL, Plastino A, Arvia AJ (1994) ACH-Models Chem 131: 121

    Google Scholar 

  40. O’Dea JJ, Osteryoung J, Osteryoung RA (1983) J Phys Chem 87: 3911

    Google Scholar 

  41. O’Dea JJ, Osteryoung J, Lane T (1986) J Phys Chem 90: 2761

    Google Scholar 

  42. Go WS, O’Dea JJ, Osteryoung J (1988) J Electroanal Chem 255: 21

    CAS  Google Scholar 

  43. Ivaska AV, Smith DE (1985) Anal Chem 47: 1910

    Google Scholar 

  44. Nuwer MJ, O’Dea JJ, Osteryoung J (1991) Anal Chim Acta 251: 13

    CAS  Google Scholar 

  45. Fatouros N, Krulic D (1998) J Electroanal Chem 443: 262

    CAS  Google Scholar 

  46. O’Dea JJ, Wojciechowski M, Osteryoung J, Aoki K (1985) Anal Chem 57: 954

    Google Scholar 

  47. Whelan DP, O’Dea JJ, Osteryoung J, Aoki K (1986) J Electroanal Chem 202: 23

    CAS  Google Scholar 

  48. Aoki K, Tokuda K, Matsuda H, Osteryoung J (1986) J Electroanal Chem 207: 25

    CAS  Google Scholar 

  49. Ramaley L, Tan WT (1987) Can J Chem 65: 1025

    CAS  Google Scholar 

  50. Fatouros N, Krulic D, Lopez-Tenes M, El Belamachi MM (1996) J Electroanal Chem 405: 197

    Google Scholar 

  51. Komorsky-Lovrić Š, Lovrić M, Bond AM (1993) Electroanalysis 5: 29

    Google Scholar 

  52. Singleton ST, O’Dea JJ, Osteryoung J (1989) Anal Chem 61: 1211

    CAS  Google Scholar 

  53. Murphy MM, O’Dea JJ, Osteryoung J (1991) Anal Chem 63: 2743

    CAS  Google Scholar 

  54. Tallman DE (1994) Anal Chem 66: 557

    CAS  Google Scholar 

  55. Kounaves SP, O’Dea JJ, Chandrasekhar P, Osteryoung J (1986) Anal Chem 58: 3199

    CAS  Google Scholar 

  56. Wikiel K, Osteryoung J (1989) Anal Chem 61: 2086

    CAS  Google Scholar 

  57. Kumar V, Heineman W (1987) Anal Chem 59: 842

    CAS  Google Scholar 

  58. Kounaves SP, Deng W (1991) J Electroanal Chem 306: 111

    CAS  Google Scholar 

  59. Penczek M, Stojek Z (1986) J Electroanal Chem 213: 177

    CAS  Google Scholar 

  60. Kounaves SP, O’Dea JJ, Chandrasekhar P, Osteryoung J (1987) Anal Chem 59: 386

    CAS  Google Scholar 

  61. Wechter C, Osteryoung J (1989) Anal Chem 61: 2092

    CAS  Google Scholar 

  62. Aoki K, Osteryoung J (1988) J Electroanal Chem 240: 45

    CAS  Google Scholar 

  63. Brookes BA, Compton RG (1999) J Phys Chem B 103: 9020

    CAS  Google Scholar 

  64. Ball JC, Compton RG (1998) J Phys Chem B 102: 3967

    CAS  Google Scholar 

  65. Agra-Gutierrez C, Ball JC, Compton RG (1998) J Phys Chem B 102: 7028

    CAS  Google Scholar 

  66. Zeng J, Osteryoung RA (1986) Anal Chem 58: 2766

    CAS  Google Scholar 

  67. O’Dea JJ, Wikiel K, Osteryoung J (1990) J Phys Chem 94: 3628

    Google Scholar 

  68. Molina A (1998) J Electroanal Chem 443: 163

    CAS  Google Scholar 

  69. Fatouros N, Krulic D (1998) J Electroanal Chem 456: 211

    CAS  Google Scholar 

  70. Turner JA, Christie JH, Vuković M, Osteryoung RA (1977) Anal Chem 49: 1904

    CAS  Google Scholar 

  71. Barker GC, Gardner AW (1979) J Electroanal Chem 100: 641

    CAS  Google Scholar 

  72. Stefani S, Seeber R (1983) Annali Chim 73: 611

    CAS  Google Scholar 

  73. Zhang J, Guo SX, Bond AM, Honeychurch MJ, Oldham KB (2005) J Phys Chem B 109: 8935

    CAS  Google Scholar 

  74. Jadreško D, Lovrić M (2008) Electrochim Acta 53: 8045

    Google Scholar 

  75. Barker GC, Bolzan JA (1966) Z Anal Chem 216: 215

    CAS  Google Scholar 

  76. Ramaley L, Dalziel JA, Tan WT (1981) Can J Chem 59: 3334

    CAS  Google Scholar 

  77. Komorsky-Lovrić Š, Lovrić M, Branica M (1988) J Electroanal Chem 241: 329

    Google Scholar 

  78. Webber A, Shah M, Osteryoung J (1983) Anal Chim Acta 154: 105

    CAS  Google Scholar 

  79. Webber A, Shah M, Osteryoung J (1984) Anal Chim Acta 157: 1

    CAS  Google Scholar 

  80. Webber A, Osteryoung J (1984) Anal Chim Acta 157: 17

    CAS  Google Scholar 

  81. Komorsky-Lovrić Š (1987) J Electroanal Chem 219: 281

    Google Scholar 

  82. Komorsky-Lovrić Š, Lovrić M (1989) Fresenius Z Anal Chem 335: 289

    Google Scholar 

  83. Xu G, O’Dea JJ, Mahoney LA, Osteryoung JG (1994) Anal Chem 66: 808

    CAS  Google Scholar 

  84. Komorsky-Lovrić Š, Lovrić M, Branica M (1989) J Electroanal Chem 266: 185

    Google Scholar 

  85. Zelić M, Branica M (1991) J Electroanal Chem 309: 227

    Google Scholar 

  86. Zelić M, Branica M (1992) Electroanalysis 4: 623

    Google Scholar 

  87. Zelić M, Branica M (1992) Anal Chim Acta 262: 129

    Google Scholar 

  88. Lovrić M, Branica M (1987) J Electroanal Chem 226: 239

    Google Scholar 

  89. Lovrić M, Komorsky-Lovrić Š (1988) J Electroanal Chem 248: 239

    Google Scholar 

  90. Komorsky-Lovrić Š, Lovrić M, Branica M (1992) J Electroanal Chem 335: 297

    Google Scholar 

  91. O’Dea JJ, Osteryoung JG (1993) Anal Chem 65: 3090

    Google Scholar 

  92. Reeves JH, Song S, Bowden EF (1993) Anal Chem 65: 683

    CAS  Google Scholar 

  93. Komorsky-Lovrić Š, Lovrić M (1995) J Electroanal Chem 384: 115

    Google Scholar 

  94. Lovrić M (1991) Elektrokhimiya 27: 186

    Google Scholar 

  95. Komorsky-Lovrić Š, Lovrić M (1995) Anal Chim Acta 305: 248

    Google Scholar 

  96. Komorsky- Lovrić Š, Lovrić M (1995) Electrochim Acta 40: 1781

    Google Scholar 

  97. Komorsky-Lovrić Š (1996) Fresenius J Anal Chem 356: 306

    Google Scholar 

  98. Lovrić M, Mlakar M (1995) Electroanalysis 7: 1121

    Google Scholar 

  99. Mirčeski V, Lovrić M, Jordanoski B (1999) Electroanalysis 11: 660

    Google Scholar 

  100. Mirčeski V, Lovrić M (1999) Anal Chim Acta 386: 47

    Google Scholar 

  101. Komorsky-Lovrić Š (2000) J Electroanal Chem 482: 222

    Google Scholar 

  102. Mirčeski V, Lovrić M (1997) Electroanalysis 9: 1283

    Google Scholar 

  103. Garay F, Solis V, Lovrić M (1999) J Electroanal Chem 478: 17

    CAS  Google Scholar 

  104. O’Dea JJ, Osteryoung JG (1997) Anal Chem 69: 650

    Google Scholar 

  105. Lovrić M, Komorsky-Lovrić Š, Bond AM (1991) J Electroanal Chem 319: 1

    Google Scholar 

  106. Lovrić M, Pižeta I, Komorsky-Lovrić Š (1992) Electroanalysis 4: 327

    Google Scholar 

  107. Mirčeski V, Lovrić M (1999) Electroanalysis 11: 984

    Google Scholar 

  108. Mirčeski V, Lovrić M (1998) Electroanalysis 10: 976

    Google Scholar 

  109. Lovrić M, Komorsky-Lovrić Š, Murray RW (1988) Electrochim Acta 33: 739

    Google Scholar 

  110. O’Dea JJ, Ribes A, Osteryoung JG (1993) J Electroanal Chem 345: 287

    Google Scholar 

  111. Ostapczuk P, Valenta P, Nürnberg HW (1986) J Electroanal Chem 214: 51

    CAS  Google Scholar 

  112. Tercier M-L, Buffle J, Graziottin F (1998) Electroanalysis 10: 355

    CAS  Google Scholar 

  113. Zen J-M, Ting YS (1996) Anal Chim Acta 332: 59

    CAS  Google Scholar 

  114. Yarnitzky C, Smyth WF (1991) Int J Pharm 75: 161

    CAS  Google Scholar 

  115. Bobrowski A, Zarebski J (2000) Electroanalysis 12: 1177

    CAS  Google Scholar 

  116. Wang J, Tian B (1992) Anal Chem 64: 1706

    CAS  Google Scholar 

  117. Emons H, Baade A, Schoning MJ (2000) Electroanalysis 12: 1171

    CAS  Google Scholar 

  118. Petrovic SC, Dewald HD (1996) J Planar Chromatogr 9: 269

    CAS  Google Scholar 

  119. Hoekstra JC, Johnson DC (1999) Anal Chim Acta 390: 45

    CAS  Google Scholar 

  120. Galus Z (1994) Fundamentals of electrochemical analysis. Ellis Horwood, New York, Polish Scientific Publishers PWN, Warsaw

    Google Scholar 

  121. Nicholson RS, Olmstead ML (1972) Numerical solutions of integral equations. In: Matson JS, Mark HB, MacDonald HC (eds) Electrochemistry: calculations, simulations and instrumentation, vol 2. Marcel Dekker, New York, p 119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milivoj Lovrić .

Editor information

Editors and Affiliations

Appendix

Appendix

(A) For a stationary planar diffusion model of a simple redox reaction (Eq. II.3.1) the following differential equations and boundary conditions can be formulated:

$\frac{{\partial c_{{\rm{red}}} }}{{\partial t}} = D_{\rm{r}} \frac{{\partial ^2 c_{{\rm{red}}} }}{{\partial x^2 }}$
((II.3.15))
$\frac{{\partial c_{{\rm{ox}}} }}{{\partial t}} = D_{\rm{o}} \frac{{\partial ^2 c_{{\rm{ox}}} }}{{\partial x^2 }}$
((II.3.16))
$t = 0,\, x \geq 0:\ c_{\rm red} = c^*,\, c_{\rm ox} = 0$
((II.3.17))
$t > 0,\, x \rightarrow \infty,\ c_{\rm red} \rightarrow c^*,\, c_{\rm ox} \rightarrow 0$
((II.3.18))
$x = 0:\ D_{\rm r} \left( {\frac{{\partial c_{{\rm{red}}} }}{{\partial x}}} \right)_{x = 0} = \frac{i}{{nFS}}$
((II.3.19))
$D_{\rm o} \left( {\frac{{\partial c_{{\rm{ox}}} }}{{\partial x}}} \right)_{x = 0} = - \frac{i}{{nFS}}$
((II.3.20))

If reaction (II.3.1) is fast and reversible, the Nernst equation has to be satisfied:

$(c_{\rm ox})_{x=0} = (c_{\rm red})_{x = 0} \exp (\varphi)$
((II.3.21))
$\varphi = \frac{nF}{RT} (E - E^{{\,{\scriptscriptstyle\bigcirc\raisebox{1.2pt}{$\rule{7.5pt}{0.4pt}$}}}})$
((II.3.22))

If reaction (II.3.1) is kinetically controlled, the Butler-Volmer equation applies:

$\frac{i}{nFS} = -k_{\rm s} \exp (- \alpha \varphi) [(c_{\rm ox})_{x = 0} -(c_{\rm{red}})_{x = 0}\exp (\varphi)]$
((II.3.23))

where c red and c ox are the concentrations of the reduced and oxidized species, respectively. D r and D o are the corresponding diffusion coefficients, k s is the standard rate constant, α is the transfer coefficient, \(E^{{\,{\scriptscriptstyle\bigcirc\raisebox{1.2pt}{$\rule{7.5pt}{0.4pt}$}}}}\) is the standard potential, x is the distance from the electrode surface, t is the time variable, and the other symbols are explained below Eq. (II.3.1) above.

The solution of Eqs. (II.3.15), (II.3.16), (II.3.17), (II.3.18), (II.3.19), (II.3.20), (II.3.21) and (II.3.22) is an integral equation [120]:

$\int\limits_0^t \varPhi ^* [\pi (t - \tau)]^{-1/2} {\textrm{d}} \tau = \exp (\varphi ^*) [1 + \exp (\varphi ^*)]^{-1}$
((II.3.24))

where

$\varPhi ^* = i [nFSc^*D_{\rm r}^{1/2}]^{-1}$
((II.3.25))
$\varphi ^* = nF(E - E_{1/2})/RT$
((II.3.26))
$E_{1/2} = E^{\,{\scriptscriptstyle\bigcirc\raisebox{1.2pt}{$\rule{7.5pt}{0.4pt}$}}} + RT[\ln (D_{\rm r}/D_{\rm o})]/2nF$
((II.3.27))

The solution for the kinetically controlled reaction is [120]:

$\begin{array}{l}\displaystyle \varPhi ^* = - \uplambda ^*\exp \left( { - \alpha \varphi ^*} \right)\left[ {1 + \exp \left( {\varphi ^*} \right)} \right] \\ \noalign{}\qquad\,\,\,\, \int\limits_0^t \displaystyle \varPhi ^*\left[ {\pi \left( {t - \tau } \right)} \right]^{ - 1/2} {\textrm{d}}\tau + \uplambda ^*\exp \left[ {\left( {1 - \alpha } \right)\varphi ^*} \right]\end{array}$
((II.3.28))

The convolution integrals in Eqs. (II.3.24) and (II.3.28) can be solved by the method of numerical integration proposed by Nicholson and Olmstead [38, 121]:

$\int\limits_0^t {\varPhi ^*\left[ {\pi \left( {t - \tau } \right)} \right]^{ - 1/2} } {\textrm{d}}\tau = 2\left( {d/\pi } \right)^{1/2} \sum\limits_{j = 1}^m {\varPhi _j^* } S_{m - j + 1}$
((II.3.29))

where d is the time increment, \(t = md,\ \varPhi_j^*\) is the average value of the function Φ * within the j th time increment, \(S_{\rm k} = k^{1/2} - (k - 1)^{1/2}\) and S 1 = 1. Each square-wave half-period is divided into 25 time increments: d = (50 f)−1. By this method, Eq. (II.3.24) is transformed into the system of recursive formulae:

$\varPhi _m = 5\left( {\pi /2} \right)^{1/2} \exp \left( {\varphi _m^* } \right)\left[ {1 + \exp \left( {\varphi _m^* } \right)} \right]^{ - 1} -\sum\limits_{j = 1}^{m - 1} {\varPhi _j } S_{m - j + 1}$
((II.3.30))

where \(\varPhi = i [nFSc^*(D_{\rm r}f)^{1/2}]^{-1},\, \varphi_m^* = nF(E_m - E_{1/2})/RT,\, m = 1, 2, 3, \ldots {\rm M}\) and \({\rm M} = 50\, (E_{\rm fin} - E_{\rm st})/\Delta E\). The potential E m changes from E stair = E st to E stair = E fin according to Fig. II.3.1. The recursive formulae for the kinetically controlled reaction are [38, 40, 41, 44]:

$\varPhi_m = Z_1 - Z_2 \sum\limits_{j = 1}^{m-1} \varPhi_j S_{m-j+1}$
((II.3.31))
$Z_1 = \frac{{\uplambda \exp [(1 - \alpha )\varphi _m^{\rm{*}} ]}}{{1 + \frac{{\uplambda \sqrt 2 }}{{5\sqrt {\rm{\pi }} }}[\exp ( - \alpha \varphi _m^{\rm{*}} ) + \exp ((1 - \alpha )\varphi _m^{\rm{*}} )]}}$
((II.3.32))
$Z_2 = \frac{{\frac{{\uplambda \sqrt 2 }}{{5\sqrt {\rm{\pi }} }}[\exp ( - \alpha \varphi _m^{\rm{*}} ) + \exp ((1 - \alpha )\varphi _m^{\rm{*}} )]}}{{1 + \frac{{\uplambda \sqrt 2 }}{{5\sqrt {\rm{\pi }} }}[\exp ( - \alpha \varphi _m^{\rm{*}} ) + \exp ((1 - \alpha )\varphi _m^{\rm{*}} )]}}$
((II.3.33))

where

$\lambda = \frac{{k_{\textrm{s}}}}{{\sqrt {D_{\textrm{o}} {\textrm{f}}}}}\left({\frac{{D_{\textrm{o}}}}{{D_{\textrm{r}}}}}\right)^{\frac{\alpha }{2}}$

is a dimensionless kinetic parameter.

(B) On a stationary spherical electrode, a simple redox reaction

${\rm Ox} + n{\textrm{e}}^- \leftrightarrows {\rm Red}$
((II.3.34))

can be mathematically represented by the well-known integral equation [120]:

$\varPhi = \frac{{k_{\rm{s}} }}{{(Df)^{1/2} }}\exp ( - \alpha \varphi )[1 - f^{1/2} (1 + \exp (\varphi ))I^{\rm{o}} ]$
((II.3.35))
$\varPhi = i(nFSc_{\rm ox}^*)^{-1}(Df)^{-1/2}$
((II.3.36))
$I^{\rm o} = \int\limits_0^t \varPhi [\pi (t-u)]^{-1/2} {\textrm{d}}u - \frac{D^{1/2}}{r} \int\limits_0^t \varPhi \exp [D(t -u)r^{-2}] {\textrm{erfc}} [D^{1/2}r^{-1} (t - u)^{1/2}]{\rm{d}}u$
((II.3.37))

where r is the radius of the spherical electrode and \(c_{{\rm{ox}}}^{\rm{*}}\) is the bulk concentration of the oxidized species. The meanings of all other symbols are as above. It is assumed that both the reactant and product are soluble, that only the oxidized species is initially present in the solution, and that the diffusion coefficients of the reactant and product are equal. For numerical integration, Eq. (II.3.35) can be transformed into a system of recursive formulae [51]:

$\varPhi_{\rm m} = \frac{{ - \frac{{D^{1/2} }}{{r^{} f^{1/2} }} - \left( {1 + \exp (\varphi _m )} \right)\sum\limits_{i = 1}^{m - 1} {\varPhi _i S_{m - i + 1} } }}{{\frac{D}{{k_{\rm{s}} r}}\exp (\alpha \varphi _m ) + S_1 \left( {1 + \exp (\varphi _m )} \right)}}$
((II.3.38))
$S_1 = 1 - \exp (Df^{-1}r^{-2}N^{-1}) {\textrm{erfc}}(D^{1/2}f^{-1/2}r^{-1}N^{-1/2})$
((II.3.39))
$\begin{array}{l}\displaystyle S_k = \exp \left[ {Df^{ - 1} r^{ - 2} N^{ - 1} \left( {k - 1} \right)} \right]{\textrm{erfc}}\left[ {D^{1/2} f^{ - 1/2} r^{ - 1} N^{ - 1/2} \left( {k - 1} \right)^{1/2} } \right] \\ \noalign{}\displaystyle \qquad\, - \exp \left( {Df^{ - 1} r^{ - 2} N^{ - 1} k} \right){\textrm{erfc}}\left( {D^{1/2} f^{ - 1/2} r^{ - 1} N^{ - 1/2} k^{1/2}} \right)\end{array}$
((II.3.40))

where N is the number of time increments in each square-wave period. The ratio k s  r/D is the dimensionless standard charge transfer rate constant of reaction (II.3.34) and the ratio rf 1/2/D 1/2 is the dimensionless electrode radius.

(C) A surface redox reaction (II.3.4) on a stationary planar electrode is represented by the system of differential equations (II.3.15) and (II.3.16), with the following initial and boundary conditions [89]:

$t= 0,\, x \geq 0\,:\, c_{\rm ox} = c_{\rm ox}^*,\, c_{\rm red} = 0,\ \varGamma_{\rm ox} = \varGamma_{\rm red} = 0$
((II.3.41))
$t > 0\,:\, x \rightarrow \infty:\ c_{\rm ox} \rightarrow c_{\rm ox}^*,\ c_{\rm red} \rightarrow 0$
((II.3.42))
$x = 0\,:\, K_{\rm ox}(c_{\rm ox})_{x=0} = \varGamma _{\rm ox}$
((II.3.43))
$K_{\rm red} (c_{\rm red})_{x=0} = \varGamma_{\rm red}$
((II.3.44))
$i/nFS = k_{\rm s} \exp (-\alpha\varphi)[\varGamma_{\rm ox} - \exp (\varphi) \varGamma_{\rm red}]$
((II.3.45))
$D_{\rm o} (\partial c_{\rm ox}/\partial x)_{x=0} = d \varGamma_{\rm ox}/dt + i/nFS$
((II.3.46))
$D_{\rm r}(\partial c_{\rm red}/\partial x)_{x = 0} = d\varGamma_{\rm red}/dt-i/nFS$
((II.3.47))
$\varphi = nF(E - E^{\,{\scriptscriptstyle\bigcirc\raisebox{1.2pt}{$\rule{7.5pt}{0.4pt}$}}}_{\varGamma_{\rm ox}/\varGamma_{\rm red}})/RT$
((II.3.48))
$E_{{\varGamma_{\rm ox}}/{\varGamma_{\rm red}}}^{{\,{\scriptscriptstyle\bigcirc\raisebox{1.2pt}{$\rule{7.5pt}{0.4pt}$}}}} = E^{{\,{\scriptscriptstyle\bigcirc\raisebox{1.2pt}{$\rule{7.5pt}{0.4pt}$}}}} + (RT/nF) \ln (K_{\rm red}/K_{\rm ox})$
((II.3.49))

where Γ ox and Γ red are the surface concentrations of the oxidized and reduced species, respectively, and K ox and K red are the constants of linear adsorption isotherms. The solution of Eqs. (II.3.15) and (II.3.16) is an integral equation:

$\begin{array}{l}\displaystyle i/nFS = k_{\rm{s}} \exp \left( { - \alpha \varphi } \right)\\ \noalign{} \displaystyle \left\{ {K_{{\rm{ox}}} c_{{\rm{ox}}}^* \left[ {1 - \exp \left( {D_{\rm{o}} tK_{{\rm{ox}}}^{ - 2} } \right){\textrm{erfc}}\left( {D_{\rm{o}}^{1/2} t^{1/2} K_{{\rm{ox}}}^{ - 1} } \right)} \right] - I_{{\rm{ox}}} - I_{{\rm{red}}} \exp \left( \varphi \right)} \right\}\end{array}$
((II.3.50))
$I_{{\rm{ox}}} = \int\limits_0^t {\left( {i/nFS} \right)\exp \left[ {D_{\rm{o}} \left( {t - \tau } \right)K_{{\rm{ox}}}^{ - 2} } \right]} {\textrm{erfc}}\left[ {D_{\rm{o}}^{1/2} \left( {t - \tau } \right)^{1/2} K_{{\rm{ox}}}^{ - 1} } \right]{\textrm{d}}\tau$
((II.3.51))
$I_{{\rm{red}}} = \int\limits_0^t {\left( {i/nFS} \right)\exp \left[ {D_{\rm{r}} \left( {t - \tau } \right)K_{{\rm{red}}}^{ - 2} } \right]} {\textrm{erfc}}\left[ {D_{\rm{r}}^{1/2} \left( {t - \tau } \right)^{1/2} K_{\rm{red}}^{ - 1} } \right]{\textrm{d}}\tau$
((II.3.52))

For numerical integration, Eqs. (II.3.50), (II.3.51) and (II.3.52) are transformed into a system of recursive formulae [93]:

$\varPhi_{\rm m} = \frac{{\kappa \exp ( - \alpha \varphi _m )\left[ {1 - \exp \left( {a_{{\rm{ox}}}^{ - 2} mN^{ - 1} } \right){\textrm{erfc}}\left( {a_{{\rm{ox}}}^{ - 1} m^{1/2} N^{ - 1/2} } \right) - SS_1 + SS_2 } \right]}}{{1 + \kappa \exp ( - \alpha \varphi _m )\left[ {2(N\pi )^{ - 1/2} \left( {a_{{\rm{ox}}} + a_{{\rm{red}}} \exp (\varphi _m )} \right) - a_{{\rm{ox}}}^2 M_1 - a_{{\rm{red}}}^2 \exp (\varphi _m )P_1 } \right]}}$
((II.3.53))
$SS_1 = 2\left( {N\pi } \right)^{-1/2} \left[ {a_{{\rm{ox}}} + a_{{\rm{red}}} \exp \left( {\varphi _m } \right)} \right]\sum\limits_{j = 1}^{m - 1} {\varPhi _j S_{m - j + 1} }$
((II.3.54))
$SS_2 = \sum\limits_{j = 1}^{m - 1} {\varPhi _j } \left[ {a_{{\rm{ox}}}^2 M_{m - j + 1} + a_{{\rm{red}}}^2 \exp \left( {\varphi _m } \right)P_{m - j + 1} } \right]$
((II.3.55))
$\varPhi = i\left( {nFSK_{{\rm{ox}}} c_{{\rm{ox}}}^* f} \right)^{ - 1}$
((II.3.56))
$\kappa = k_{\textrm{s}} /f$
((II.3.57))
$a_{{\rm{ox}}} = K_{{\rm{ox}}} f^{1/2} D_{\rm{o}}^{{\rm{ - 1/2}}} $
((II.3.58))
$a_{{\rm{red}}} = K_{{\rm{red}}} f^{1/2} D_{\rm{r}}^{{\rm{ - 1/2}}} $
((II.3.59))
$d = N^{ - 1} f^{ - 1} $
((II.3.60))
$S_k = k^{1/2} - \left( {k - 1} \right)^{1/2}$
((II.3.61))
$M_1 = 1 - \exp \left( {a_{{\rm{ox}}}^{ - 2} N^{ - 1} } \right){\textrm{erfc}}\left( {a_{{\rm{ox}}}^{ - 1} N^{ - 1/2} } \right)$
$\begin{array}{l}\displaystyle M_k = \exp \left[ {a_{{\rm{ox}}}^{{\rm{ - 2}}} \left( {k - 1} \right)N^{ - 1} } \right]{\textrm{erfc}}\left[ {a_{{\rm{ox}}}^{ - 1} \left( {k - 1} \right)^{1/2} N^{-1/2} } \right] \\ \noalign{}\qquad\,\,\, \displaystyle - \exp \left[ {a_{{\rm{ox}}}^{{\rm{ - 2}}} kN^{ - 1} } \right]{\textrm{erfc}}\left[ {a_{{\rm{ox}}}^{{\rm{ - 1}}} k^{ 1/2} N^{ - 1/2} } \right]\end{array}$
((II.3.62))
$P_1 = 1 - \exp \left( {a_{{\rm{red}}}^{{\rm{ - 2}}} N^{ - 1} } \right){\textrm{erfc}}\left( {a_{{\rm{red}}}^{ - 1} N^{ - 1/2} } \right)$
$\begin{array}{l}\displaystyle P_k = \exp \left[ {a_{{\rm{red}}}^{{\rm{ - 2}}} \left( {k - 1} \right)N^{ - 1} } \right]{\textrm{erfc}}\left[ {a_{{\rm{red}}}^{{\rm{ - 1}}} \left( {k - 1} \right)^{1/2} N^{ - 1/2} } \right] \\ \noalign{}\qquad\,\,\, \displaystyle - \exp \left[ {a_{{\rm{red}}}^{ - 2} kN^{ - 1} } \right]{\textrm{erfc}}\left[ {a_{{\rm{red}}}^{{\rm{ - 1}}} k^{ 1/2} N^{ - 1/2} } \right]\end{array}$
((II.3.63))

(D) In a simplified approach to the surface redox reaction, the transport of Ox and Red in the solution is neglected. This assumption corresponds to a totally irreversible adsorption of both redox species [94]:

$({\rm Ox})_{\rm ads} + n{\textrm{e}}^- \rightleftarrows ({\rm Red})_{\rm ads}$
((II.3.64))

The current is determined by Eq. (II.3.45), with the initial and boundary conditions:

$t=0,\, \varGamma_{\rm ox} = \varGamma_{\rm ox}^*,\, \varGamma_{\rm red} = 0$
((II.3.65))
$t > 0\,:\, \varGamma_{\rm ox} +\varGamma_{\rm red} = \varGamma_{\rm ox}^* $
((II.3.66))
${\textrm{d}}\varGamma_{\rm ox}/{\textrm{d}}t = -i/nFS$
((II.3.67))
${\textrm{d}}\varGamma_{\rm red} / {\textrm{d}}t = i/nFS$
((II.3.68))

The solution of Eq. (II.3.45) is a system of recursive formulae:

$\phi_{\rm m} = \frac{{\kappa \exp ( - \alpha \varphi _m )\left[ {1 - N^{ - 1} (1 + \exp (\varphi _m ))\sum\limits_{j = 1}^{m - 1} {\varPhi _{{j}} } } \right]}}{{1 + \kappa \exp ( - \alpha \varphi _m )N^{ - 1} (1 + \exp (\varphi _m ))}}$
((II.3.69))
$\varPhi = \frac{i}{nFS\varGamma_{\rm ox}^*f}$
((II.3.70))

The kinetic parameter κ is defined by Eq. (II.3.57).

Under chronoamperometric conditions (E = const.), the solution of Eq. (II.3.45) is

$\varPhi = \uplambda \exp (- \alpha \varphi) \exp [-\uplambda \exp(-\alpha \varphi) (1 + \exp (\varphi))]$
((II.3.71))
$\varPhi = it (nFS\varGamma_{\rm ox}^*)^{-1}$
((II.3.72))
$\uplambda = k_{\rm s}t$
((II.3.73))

If \(\varphi = 0\), Eq. (II.3.71) is reduced to

$i/nFS \varGamma_{\rm ox}^* = k_{\textrm{s}} \exp (-2k_{\rm s}t)$
((II.3.74))

The maximum chronoamperometric response is defined by the first derivative of Eq. (II.3.71):

$\partial \varPhi / \partial \uplambda = 0$
((II.3.75))
$\uplambda_{\rm max} = \exp(\alpha \varphi) [1 + \exp (\varphi)]^{-1}$
((II.3.76))

The second condition is:

$\partial \uplambda _{\max} / \partial \varphi = 0$
((II.3.77))

with the result:

$\exp (\varphi_{\max}) = \frac{\alpha}{1-\alpha}$
((II.3.78))
$\uplambda_{\max, \max} = \alpha^{\alpha} (1 - \alpha)^{1 - \alpha}$
((II.3.79))
$\varPhi_{\max} = \frac{1 - \alpha}{e}$
((II.3.80))

This derivation shows that, for any electrode potential E, there is a certain dimensionless kinetic parameter λmax which gives the highest response (Eq. II.3.76). The maximum of λmax (Eq. II.3.79) is a parabolic function of the transfer coefficient: \(0.5 \leq \uplambda_{\max, \max} < 1\), for \(0 < \alpha < 1\). If \(\alpha = 0.5\), then \(\uplambda_{\max, \max} = 0.5\) and \(\varPhi_{\max} = (2{\rm e})^{-1}\). This is in the agreement with Eq. (II.3.74). From the condition ∂i/∂k s = 0, it follows that k s,max = (2t)−1 and \((i/nFS \varGamma _{{\rm{ox}}}^*)_{\max} = (2{\rm e}t)^{-1}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lovrić, M. (2010). Square-Wave Voltammetry. In: Scholz, F., et al. Electroanalytical Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02915-8_6

Download citation

Publish with us

Policies and ethics