Skip to main content

Real-Time Approaches for Model-Based PIV and Visual Fluid Analysis

  • Conference paper
Imaging Measurement Methods for Flow Analysis

Abstract

In this research project, approaches for the reliable reconstruction of flow fields from captured particle images and their visualization have been developed. One aspect has been on developing techniques that can generate a velocity field that is consistent with a selected physical fluid model. Therefore, we have introduced a model-based approach that integrates a priori knowledge of this model into the reconstruction process. Another aspect has been on the design of techniques that are capable of dealing with real-time constraints, and which thus have the potential to be used in combination with high-speed camera systems to interactively steer the reconstruction process. Programmable graphics hardware has been exploited as a co-processor for numerical computations to achieve interactivity, both for the reconstruction and visualization of generated fields. All these techniques have been verified in an experiment on living microorganisms. In the last phase of the project we have focused on the extension of the techniques towards the processing of 3D particle images and the visualization of the reconstructed flow fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bürger, K., Schneider, J., Kondratieva, P., Krüger, J., Westermann, R.: Interactive visual exploration of instationary 3D-flows. In: Eurographics/IEEE VGTC Symposium on Visualization (EuroVis) (2007)

    Google Scholar 

  2. Bürger, K., Kondratieva, P., Krüger, J., Westermann, R.: Importance-driven particle techniques for flow visualization. In: Proceedings of IEEE VGTC Pacific Visualization Symposium (2008)

    Google Scholar 

  3. Corpetti, T., Mémin, E., Pérez, P.: Estimating fluid optical flow. In: 15th Int. Conf. Pattern Recognition, vol. 3, pp. 1045–1048 (2000)

    Google Scholar 

  4. Corpetti, T., Heitz, D., Arroyo, G., Mémin, E., Santa-Cruz, A.: Fluid experimental flow estimation based on an optical-flow scheme. Exp. Fluids 40(1), 80–97 (2005)

    Article  Google Scholar 

  5. Gupta, S., Prince, J.: Stochastic models for div-curl optical flow methods. Signal Proc. Lett. 3(2), 32–34 (1996)

    Article  Google Scholar 

  6. Hackbusch, W.: Iterative Solutions of Large Sparse Systems of Equations. Springer, New York (1994)

    Google Scholar 

  7. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  8. Kalmoun, E.M., Rüde, U.: A variational multigrid for computing the optical flow. In: Vision, Modeling, and Visualization Conference, pp. 577–584 (2003)

    Google Scholar 

  9. Kondratieva, P., Georgii, J., Westermann, R.: Echtzeitverfahren zur modellbasierten rekonstruktion von strömungsfeldern aus experimentell bestimmten partikelsequenzen. In: 14. GALA Fachtagung, Lasermethoden in der Strömungsmesstechnik (2006)

    Google Scholar 

  10. Kondratieva, P., Georgii, J., Petermeier, H., Kowalczyk, W., Delgado, A., Westermann, R.: A real-time model-based approach for the reconstruction of fluid flows induced by microorganisms. Experiments in Fluids 45(2), 203–222 (2008)

    Article  Google Scholar 

  11. Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Transactions on Graphics 22(3), 908–916 (2003)

    Article  Google Scholar 

  12. Krüger, J., Kipfer, P., Kondratieva, P., Westermann, R.: A particle system for interactive visualization of 3D flows. IEEE Transactions on Visualization and Computer Graphics 11(6), 744–756 (2005)

    Article  Google Scholar 

  13. Mémin, E., Pérez, P.: A multigrid approach for hierarchical motion estimation. In: International Conference on Computer Vision, pp. 933–938 (1998)

    Google Scholar 

  14. Modersitzki, J.: Numerical Methods for Image Registration. Oxford university press, New York (2004)

    MATH  Google Scholar 

  15. Nakajima, Y., Inomata, H., Nogawa, H., Sato, Y., Tamura, S., Okazaki, K., Torii, S.: Physics-based flow estimation of fluids. Pattern Recognition 36(5), 1203–1212 (2003)

    Article  Google Scholar 

  16. Nobach, H., Ouellette, N.T., Bodenschatz, E., Tropea, C.: Full-field correlation-based image processing for PIV. In: 6th International Symposium on Particle Image Velocimetry (2005)

    Google Scholar 

  17. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. In: Computer Graphics Forum, vol. 26, pp. 80–113 (2007)

    Google Scholar 

  18. Petermeier, H., Delgado, A., Kondratieva, P., Westermann, R., Holtmann, F., Krishnamachari, V., Denz, C.: A hybrid approach between experiment and evaluation for artefact detection and flow field reconstruction. In: 12th International Symposium on Flow Visualization (2006)

    Google Scholar 

  19. Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow visualisation: Feature extraction and tracking. Computer Graphics Forum 22(4), 775–792 (2003)

    Article  Google Scholar 

  20. Quenot, G.M., Pakleza, J.D., Kowalewski, T.A.: Particle image velocimetry with optical flow. Exp. Fluids 25(3), 177–189 (1998)

    Article  Google Scholar 

  21. Raffel, M., Willert, C.E., Kompenhans, J.: Particle image velocimetry: A practical guide, 2nd edn. Springer, Heidelberg (2001)

    Google Scholar 

  22. Ruhnau, P., Schnörr, C.: Optical stokes flow estimation: An imaging-based control approach. Exp. Fluids 42(1), 61–78 (2007)

    Article  Google Scholar 

  23. Ruhnau, P., Kohlberger, T., Schnörr, C., Nobach, H.: Variational optical flow estimation for particle image velocimetry. Exp. Fluids 38(1), 21–32 (2005)

    Article  Google Scholar 

  24. Scarano, F.: Iterative image deformation methods in PIV. Meas. Sci. and Technol. 13(1), R1–R19 (2002)

    Article  Google Scholar 

  25. Schiwietz, T., Westermann, R.: Gpu-piv. In: Vision, Modeling and Visualization 2004 (2004)

    Google Scholar 

  26. Westerweel, J.: Digital particle image velocimetry: Theory and application. PhD thesis, Delft University of Technology (1993)

    Google Scholar 

  27. Willert, C., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10(4), 181–193 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kondratieva, P., Bürger, K., Georgii, J., Westermann, R. (2009). Real-Time Approaches for Model-Based PIV and Visual Fluid Analysis. In: Nitsche, W., Dobriloff, C. (eds) Imaging Measurement Methods for Flow Analysis. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01106-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01106-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01105-4

  • Online ISBN: 978-3-642-01106-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics