Skip to main content

Role of Endocannabinoid Signaling in Anxiety and Depression

  • Chapter
  • First Online:
Behavioral Neurobiology of the Endocannabinoid System

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 1))

Abstract

Cannabinoid receptors and their endogenous ligands are located throughout the limbic, or “emotional,” brain, where they modulate synaptic neurotransmission. Converging preclinical and clinical data suggest a role for endogenous cannabinoid signaling in the modulation of anxiety and depression. Augmentation of endocannabinoid signaling (ECS) has anxiolytic effects, whereas blockade or genetic deletion of CB1 receptors has anxiogenic properties. Augmentation of ECS also appears to have anti-depressant actions, and in some assays blockade and genetic deletion of CB1 receptors produces depressive phenotypes. These data provide evidence that ECS serves in an anxiolytic, and possibly anti-depressant, role. These data suggest novel approaches to treatment of affective disorders which could include enhancement of endogenous cannabinoid signaling, and warrant cautious use of CB1 receptor antagonists in patients with pre-existing affective disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2AG:

2-Arachidonoylglycerol

5-HT:

5-Hydroxytryptamine, serotonin

ACC:

Anterior cingulate cortex

AEA:

Anandamide

BLA:

Basolateral amygdala

CCK:

Cholecystokinin

CUS:

Chronic exposure to an unpredictable and variable set of stressors

ECS:

Endocannabinoid signaling

ECT:

Electroconvulsive therapy

FAAH:

Fatty acid amide hydrolase

HPA:

Hypothalamus–pituitary–adrenal

KO:

Knockout

PFC:

Prefrontal cortex

PTSD:

Post-traumatic stress disorder

PVN:

Paraventricular nucleus

SSRI:

Selective serotonin re-uptake inhibitors

References

  • Ablon SL, Goodwin FK (1974) High frequency of dysphoric reactions to tetrahydrocannabinol among depressed patients. Am J Psychiatry 131:448–453

    PubMed  CAS  Google Scholar 

  • Alonso R, Voutsinos B, Fournier M et al. (1999) Blockade of cannabinoid receptors by SR141716 selectively increases Fos expression in rat mesocorticolimbic areas via reduced dopamine D2 function. Neuroscience 91:607–620

    PubMed  CAS  Google Scholar 

  • Appelhof BC, Huyser J, Verweij M et al. (2006) Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression). Biol Psychiatry 59:696–701

    PubMed  CAS  Google Scholar 

  • Arendt M, Rosenberg R, Fjordback L et al. (2007) Testing the self-medication hypothesis of depression and aggression in cannabis-dependent subjects. Psychol Med 37:935–945

    PubMed  Google Scholar 

  • Arevalo C, de Miguel R, Hernandez-Tristan R (2001) Cannabinoid effects on anxiety-related behaviours and hypothalamic neurotransmitters. Pharmacol Biochem Behav 70:123–131

    PubMed  CAS  Google Scholar 

  • Arnone M, Maruani J, Chaperon F et al. (1997) Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology (Berl) 132:104–106

    CAS  Google Scholar 

  • Bambico FR, Katz N, Debonnel G, et al. (2007) Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J Neurosci 27:11700–11711

    PubMed  CAS  Google Scholar 

  • Barna I, Zelena D, Arszovszki AC et al. (2004) The role of endogenous cannabinoids in the hypothalamo-pituitary-adrenal axis regulation: in vivo and in vitro studies in CB1 receptor knockout mice. Life Sci 75:2959–2970

    PubMed  CAS  Google Scholar 

  • Barrero FJ, Ampuero I, Morales B et al. (2005) Depression in Parkinson's disease is related to a genetic polymorphism of the cannabinoid receptor gene (CNR1). Pharmacogenomics J 5:135–141

    PubMed  CAS  Google Scholar 

  • Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68

    PubMed  CAS  Google Scholar 

  • Beltramo M, Piomelli D (2000) Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol. Neuroreport 11:1231–1235

    PubMed  CAS  Google Scholar 

  • Beltramo M, Stella N, Calignano A et al. (1997) Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277:1094–1097

    PubMed  CAS  Google Scholar 

  • Berrendero F, Maldonado R (2002) Involvement of the opioid system in the anxiolytic-like effects induced by Delta(9)-tetrahydrocannabinol. Psychopharmacology (Berl) 163:111–117

    CAS  Google Scholar 

  • Bortolato M, Campolongo P, Mangieri RA et al. (2006) Anxiolytic-like properties of the anandamide transport inhibitor AM404. Neuropsychopharmacology 31:2652–2659

    PubMed  CAS  Google Scholar 

  • Bortolato M, Mangieri RA, Fu J et al. (2007) Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol Psychiatry 62:1103–1110

    PubMed  CAS  Google Scholar 

  • Bovasso GB (2001) Cannabis abuse as a risk factor for depressive symptoms. Am J Psychiatry 158:2033–2037

    PubMed  CAS  Google Scholar 

  • Boys A, Marsden J, Strang J (2001) Understanding reasons for drug use amongst young people: a functional perspective. Health Educ Res 16:457–469

    PubMed  CAS  Google Scholar 

  • Breivogel CS, Selley DE, Childers SR (1998) Cannabinoid receptor agonist efficacy for stimulating [35S]GTPgammaS binding to rat cerebellar membranes correlates with agonist-induced decreases in GDP affinity. J Biol Chem 273:16865–16873

    PubMed  CAS  Google Scholar 

  • Cannich A, Wotjak CT, Kamprath K et al. (2004) CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Memory 11:625–632

    Google Scholar 

  • Chabrol H, Chauchard E, Girabet J (2008) Cannabis use and suicidal behaviours in high-school students. Addict Behav 33:152–155

    PubMed  Google Scholar 

  • Chhatwal JP, Davis M, Maguschak KA et al. (2005) Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 30:516–524

    PubMed  CAS  Google Scholar 

  • Christensen R, Kristensen PK, Bartels EM et al.(2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370:1706–1713

    PubMed  CAS  Google Scholar 

  • Cotter D, Mackay D, Landau S et al. (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58:545–553

    PubMed  CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP et al. (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    PubMed  CAS  Google Scholar 

  • Cravatt BF, Demarest K, Patricelli MP et al. (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 98:9371–9376

    PubMed  CAS  Google Scholar 

  • Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    PubMed  CAS  Google Scholar 

  • Davis MI, Ronesi J, Lovinger DM (2003) A predominant role for inhibition of the adenylate cyclase/protein kinase a pathway in ERK activation by cannabinoid receptor 1 in N1E-115 neuroblastoma cells. J Biol Chem 278:48973–48980

    PubMed  CAS  Google Scholar 

  • Degenhardt L, Hall W, Lynskey M (2003) Exploring the association between cannabis use and depression. Addiction 98:1493–1504

    PubMed  Google Scholar 

  • Degroot A, Nomikos GG (2004) Genetic deletion and pharmacological blockade of CB1 receptors modulates anxiety in the shock-probe burying test. Eur J NeuroSci 20:1059–1064

    PubMed  Google Scholar 

  • Di S, Malcher-Lopes R, Halmos KC et al. (2003) Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci 23:4850–4857

    PubMed  CAS  Google Scholar 

  • Foldy C, Lee SY, Szabadics J et al. (2007) Cell type-specific gating of perisomatic inhibition by cholecystokinin. Nat Neurosci 10:1128–1130

    PubMed  Google Scholar 

  • Freedland CS, Sharpe AL, Samson HH et al. (2001) Effects of SR141716A on ethanol and sucrose self-administration. Alcohol Clin Exp Res 25:277–282

    Google Scholar 

  • Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signalling. Physiol Rev 83:1017–1066

    PubMed  CAS  Google Scholar 

  • Fu Q, Heath AC, Bucholz KK et al. (2002a) Shared genetic risk of major depression, alcohol dependence, and marijuana dependence: contribution of antisocial personality disorder in men. Arch Gen Psychiatry 59:1125–1132

    PubMed  Google Scholar 

  • Fu Q, Heath AC, Bucholz KK et al. (2002b) A twin study of genetic and environmental influences on suicidality in men. Psychol Med 32:11–24

    PubMed  CAS  Google Scholar 

  • Galve-Roperh I, Rueda D, Gomez del Pulgar T et al. (2002) Mechanism of extracellular signal-regulated kinase activation by the CB(1) cannabinoid receptor. Mol Pharmacol 62:1385–1392

    PubMed  CAS  Google Scholar 

  • Gobbi G, Bambico FR, Mangieri R et al. (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 102:18620–18625

    PubMed  CAS  Google Scholar 

  • Gobshtis N, Ben-Shabat S, Fride E (2007) Antidepressant-induced undesirable weight gain: prevention with rimonabant without interference with behavioral effectiveness. Eur J Pharmacol 554:155–163

    PubMed  CAS  Google Scholar 

  • Gregg JM, Small EW, Moore R et al. (1976) Emotional response to intravenous delta9tetrahydrocannabinol during oral surgery. J Oral Surg 34:301–313

    PubMed  CAS  Google Scholar 

  • Griebel G, Stemmelin J, Scatton B (2005) Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol Psychiatry 57:261–267

    PubMed  CAS  Google Scholar 

  • Haj-Dahmane S, Shen RY (2005) The wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signalling. J Neurosci 25:896–905

    PubMed  CAS  Google Scholar 

  • Haller J, Bakos N, Szirmay M et al. (2002) The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur J NeuroSci 16:1395–1398

    PubMed  CAS  Google Scholar 

  • Haller J, Varga B, Ledent C et al. (2004a) Context-dependent effects of CB1 cannabinoid gene disruption on anxiety-like and social behaviour in mice. Eur J NeuroSci 19:1906–1912

    PubMed  CAS  Google Scholar 

  • Haller J, Varga B, Ledent C et al. (2004b) CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents. Behav Pharmacol 15:299–304

    PubMed  CAS  Google Scholar 

  • Haller J, Matyas F, Soproni K et al. (2007) Correlated species differences in the effects of cannabinoid ligands on anxiety and on GABAergic and glutamatergic synaptic transmission. Eur J NeuroSci 25:2445–2456

    PubMed  CAS  Google Scholar 

  • Harder VS, Morral AR, Arkes J (2006) Marijuana use and depression among adults: Testing for causal associations. Addiction 101:1463–1472

    PubMed  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Endocannabinoids and synaptic function in the CNS. Neuroscientist 13:127–137

    PubMed  CAS  Google Scholar 

  • Havekes R, Nijholt IM, Visser AK et al. (2008) Transgenic inhibition of neuronal calcineurin activity in the forebrain facilitates fear conditioning, but inhibits the extinction of contextual fear memories. Neurobiol Learn Memory 89:595–598

    CAS  Google Scholar 

  • Herkenham M, Lynn AB, Little MD et al. (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 87:1932–1936

    PubMed  CAS  Google Scholar 

  • Herry C, Trifilieff P, Micheau J et al. (2006) Extinction of auditory fear conditioning requires MAPK/ERK activation in the basolateral amygdala. Eur J NeuroSci 24:261–269

    PubMed  Google Scholar 

  • Hesketh SA, Brennan AK, Jessop DS et al. (2008) Effects of chronic treatment with citalopram on cannabinoid and opioid receptor-mediated G-protein coupling in discrete rat brain regions. Psychopharmacology (Berl) 198:29–36

    CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2005a) Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav Pharmacol 16:333–352

    PubMed  CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2005b) Pharmacological enhancement of cannabinoid CB(1) receptor activity elicits an antidepressant-like response in the rat forced swim test. Eur Neuropsychopharmacol 15(6):593–599

    PubMed  CAS  Google Scholar 

  • Hill MN, Patel S, Carrier EJ et al. (2005a) Downregulation of endocannabinoid signalling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacology 30:508–515

    PubMed  CAS  Google Scholar 

  • Hill MN, Sun JC, Tse MT et al. (2005b) Altered responsiveness of serotonin receptor subtypes following long-term cannabinoid treatment. Int J Neuropsychopharmacol 9:277–286

    PubMed  Google Scholar 

  • Hill MN, Ho WS, Sinopoli KJ et al. (2006) Involvement of the endocannabinoid system in the ability of long-term tricyclic antidepressant treatment to suppress stress-induced activation of the hypothalamic–pituitary–adrenal axis. Neuropsychopharmacology 31:2591–2599

    PubMed  CAS  Google Scholar 

  • Hill MN, Barr AM, Ho WS et al. (2007a) Electroconvulsive shock treatment differentially modulates cortical and subcortical endocannabinoid activity. J Neurochem 103:47–56

    PubMed  CAS  Google Scholar 

  • Hill MN, Karacabeyli ES, Gorzalka BB (2007b) Estrogen recruits the endocannabinoid system to modulate emotionality. Psychoneuroendocrinology 32:350–357

    PubMed  CAS  Google Scholar 

  • Hill MN, Miller GE, Ho WS et al. (2008) Serum endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry 41:48–53

    PubMed  CAS  Google Scholar 

  • Ho W-SV, Hillard CJ (2005) Modulators of endocannabinoid enzymic hydrolysis and membrane transport. In: Pertwee R (ed) Cannabinoids (handbook of experimental pharmacology). Springer, Freiburg, pp 187–207

    Google Scholar 

  • Holter SM, Kallnik M, Wurst W et al. (2005) Cannabinoid CB1 receptor is dispensable for memory extinction in an appetitively-motivated learning task. Eur J Pharmacol 510:69–74

    PubMed  Google Scholar 

  • Huestis MA, Gorelick DA, Heishman SJ et al. (2001) Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch Gen Psychiatry 58:322–328

    PubMed  CAS  Google Scholar 

  • Hungund BL, Vinod KY, Kassir SA et al. (2004) Upregulation of CB1 receptors and agonist-stimulated [35S]GTPgammaS binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry 9:184–190

    PubMed  CAS  Google Scholar 

  • Jardinaud F, Crete D, Canestrelli C et al. (2005) CB1 receptor knockout mice show similar behavioral modifications to wild-type mice when enkephalin catabolism is inhibited. Brain Res 1063:77–83

    PubMed  CAS  Google Scholar 

  • Jarrahian A, Manna S, Edgemond WS et al. (2000) Structure–activity relationships among N-arachidonylethanolamine (Anandamide) head group analogues for the anandamide transporter. J Neurochem 74:2597–2606

    PubMed  CAS  Google Scholar 

  • Kamprath K, Marsicano G, Tang J et al. (2006) Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci 26:6677–6686

    PubMed  CAS  Google Scholar 

  • Kandel DB, Davies M, Karus D et al. (1986) The consequences in young adulthood of adolescent drug involvement. An overview. Arch Gen Psychiatry 43:746–754

    PubMed  CAS  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D et al. (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    PubMed  CAS  Google Scholar 

  • Kendler KS, Karkowski LM, Neale MC et al. (2000) Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population-based sample of male twins. Arch Gen Psychiatry 57:261–269

    PubMed  CAS  Google Scholar 

  • Koethe D, Llenos IC, Dulay JR et al. (2007) Expression of CB(1) cannabinoid receptor in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression. J Neural Transm 114:1055–1063

    PubMed  CAS  Google Scholar 

  • Kotin J, Post RM, Goodwin FK (1973) Delta9-tetrahydrocannabinol in depressed patients. Arch Gen Psychiatry 28:345–348

    PubMed  CAS  Google Scholar 

  • Lafenetre P, Chaouloff F, Marsicano G (2007) The endocannabinoid system in the processing of anxiety and fear and how CB1 receptors may modulate fear extinction. Pharmacol Res 56:367–381

    PubMed  CAS  Google Scholar 

  • Lin HC, Mao SC, Gean PW (2006) Effects of intra-amygdala infusion of CB1 receptor agonists on the reconsolidation of fear-potentiated startle. Learn Memory 13:316–321

    CAS  Google Scholar 

  • Lynskey MT, Heath AC, Nelson EC et al. (2002) Genetic and environmental contributions to cannabis dependence in a national young adult twin sample. Psychol Med 32:195–207

    PubMed  CAS  Google Scholar 

  • Lynskey MT, Glowinski AL, Todorov AA et al. (2004) Major depressive disorder, suicidal ideation, and suicide attempt in twins discordant for cannabis dependence and early-onset cannabis use. Arch Gen Psychiatry 61:1026–1032

    PubMed  Google Scholar 

  • Maccarrone M, Valverde O, Barbaccia ML et al. (2002) Age-related changes of anandamide metabolism in CB1 cannabinoid receptor knockout mice: correlation with behaviour. Eur J NeuroSci 15:1178–1186

    PubMed  Google Scholar 

  • Macri S, Laviola G (2004) Single episode of maternal deprivation and adult depressive profile in mice: interaction with cannabinoid exposure during adolescence. Behav Brain Res 154:231–238

    PubMed  Google Scholar 

  • Malone DT, Taylor DA (1998) Modulation of delta9-tetrahydrocannabinol-induced hypothermia by fluoxetine in the rat. Br J Pharmacol 124:1419–1424

    PubMed  CAS  Google Scholar 

  • Marco EM, Perez-Alvarez L, Borcel E et al. (2004) Involvement of 5-HT1A receptors in behavioural effects of the cannabinoid receptor agonist CP 55, 940 in male rats. Behav Pharmacol 15:21–27

    PubMed  CAS  Google Scholar 

  • Marco EM, Adriani W, Llorente R et al. (2009) Detrimental psychophysiological effects of early maternal deprivation in adolescent and adult rodents: Altered responses to cannabinoid exposure. Neurosci Biobehav Rev 33(4):498–507

    PubMed  CAS  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC et al. (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    PubMed  CAS  Google Scholar 

  • Martin M, Ledent C, Parmentier M et al. (2002) Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl) 159:379–387

    CAS  Google Scholar 

  • McGregor IS, Dastur FN, McLellan RA et al. (1996) Cannabinoid modulation of rat pup ultrasonic vocalizations. Eur J Pharmacol 313:43–49

    PubMed  CAS  Google Scholar 

  • McLaughlin RJ, Hill MN, Morrish AC et al. (2007) Local enhancement of cannabinoid CB1 receptor signalling in the dorsal hippocampus elicits an antidepressant-like effect. Behav Pharmacol 18:431–438

    PubMed  CAS  Google Scholar 

  • Mendelson WB, Basile AS (2001) The hypnotic actions of the fatty acid amide, oleamide. Neuropsychopharmacology 25:S36–S39

    PubMed  CAS  Google Scholar 

  • Miller-Johnson S, Lochman JE, Coie JD et al. (1998) Comorbidity of conduct and depressive problems at sixth grade: substance use outcomes across adolescence. J Abnorm Child Psychol 26:221–232

    PubMed  CAS  Google Scholar 

  • Monory K, Massa F, Egertova M et al. (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51:455–466

    PubMed  CAS  Google Scholar 

  • Moreira FA, Aguiar DC, Guimaraes FS (2007) Anxiolytic-like effect of cannabinoids injected into the rat dorsolateral periaqueductal gray. Neuropharmacology 52:958–965

    PubMed  CAS  Google Scholar 

  • Moreira FA, Kaiser N, Monory K et al. (2008) Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. Neuropharmacology 54:141–150

    PubMed  CAS  Google Scholar 

  • Naidu PS, Varvel SA, Ahn K et al. (2007) Evaluation of fatty acid amide hydrolase inhibition in murine models of emotionality. Psychopharmacology (Berl) 192:61–70

    CAS  Google Scholar 

  • Navarro M, Hernandez E, Munoz RM et al. (1997) Acute administration of the CB1 cannabinoid receptor antagonist SR 141716A induces anxiety-like responses in the rat. NeuroReport 8:491–496

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Gould E, Manji H et al. (2002) Preclinical models: status of basic research in depression. Biol Psychiatry 52:503–528

    PubMed  Google Scholar 

  • Nevo I, Becker C, Hamon M et al. (1996) Stress- and yohimbine-induced release of cholecystokinin in the frontal cortex of the freely moving rat: prevention by diazepam but not ondansetron. J Neurochem 66:2041–2049

    PubMed  CAS  Google Scholar 

  • Nissen SE, Nicholls SJ, Wolski K et al. (2008) Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 299:1547–1560

    PubMed  CAS  Google Scholar 

  • Niyuhire F, Varvel SA, Thorpe AJ et al. (2007) The disruptive effects of the CB1 receptor antagonist rimonabant on extinction learning in mice are task-specific. Psychopharmacology (Berl) 191:223–231

    CAS  Google Scholar 

  • Pamplona FA, Takahashi RN (2006) WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors. Neurosci Lett 397:88–92

    PubMed  CAS  Google Scholar 

  • Pamplona FA, Prediger RD, Pandolfo P et al. (2006) The cannabinoid receptor agonist WIN 55, 212-2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology (Berl) 188:641–649

    CAS  Google Scholar 

  • Patel S, Hillard CJ (2006) Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signalling. J Pharmacol Exp Ther 318:304–311

    PubMed  CAS  Google Scholar 

  • Patel S, Hillard CJ (2008) Adaptations in endocannabinoid signalling in response to repeated homotypic stress: A novel mechanism for stress habituation. Eur J Neurosci 27(11):2921–2929

    Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ et al. (2004) Endocannabinoid signalling negatively modulates stress-induced activation of the hypothalamic–pituitary–adrenal axis. Endocrinology 145:5431–5438

    PubMed  CAS  Google Scholar 

  • Patel S, Carrier EJ, Ho WS et al. (2005a) The postmortal accumulation of brain N-arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase activity. J Lipid Res 46:342–349

    PubMed  CAS  Google Scholar 

  • Patel S, Cravatt BF, Hillard CJ (2005b) Synergistic interactions between cannabinoids and environmental stress in the activation of the central amygdala. Neuropsychopharmacology 30:497–507

    PubMed  CAS  Google Scholar 

  • Patton GC, Coffey C, Carlin JB et al. (2002) Cannabis use and mental health in young people: cohort study. Br Med J 325:1195–1198

    Google Scholar 

  • Perio A, Barnouin MC, Poncelet M et al. (2001) Activity of SH141716 on post-reinforcement pauses in operant responding for sucrose reward in rats. Behav Pharmacol 12:641–645

    PubMed  CAS  Google Scholar 

  • Poncelet M, Maruani J, Calassi R et al. (2003) Overeating, alcohol and sucrose consumption decrease in CB1 receptor deleted mice. Neurosci Lett 343:216–218

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Anton G, Blavet N et al. (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    PubMed  CAS  Google Scholar 

  • Rademacher DJ, Hillard CJ (2007) Interactions between endocannabinoids and stress-induced decreased sensitivity to natural reward. Prog Neuropsychopharmacol Biol Psychiatry 31:633–641

    PubMed  CAS  Google Scholar 

  • Rademacher DJ, Meier SE, Shi L et al. (2008) Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology 54:108–116

    PubMed  CAS  Google Scholar 

  • Reich CG, Mohammadi MH, Alger BE (2008) Endocannabinoid modulation of fear responses: learning and statedependent performance effects. J Psychopharmacol 22(7):769–777

    PubMed  CAS  Google Scholar 

  • Reilly D, Didcott P, Swift W et al. (1998) Long-term cannabis use: characteristics of users in an Australian rural area. Addiction 93:837–846

    PubMed  CAS  Google Scholar 

  • Rey JM, Tennant CC (2002) Cannabis and mental health. Br Med J 325:1183–1184

    Google Scholar 

  • Rodgers RJ, Haller J, Halasz J et al. (2003) 'One-trial sensitization' to the anxiolytic-like effects of cannabinoid receptor antagonist SR141716A in the mouse elevated plus-maze. Eur J NeuroSci 17:1279–1286

    PubMed  CAS  Google Scholar 

  • Rodriguez de Fonseca F, Carrera MR, Navarro M et al. (1997) Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science 276:2050–2054

    PubMed  CAS  Google Scholar 

  • Rubino T, Sala M, Vigano D et al. (2007) Cellular mechanisms underlying the anxiolytic effect of low doses of peripheral delta(9)-tetrahydrocannabinol in rats. Neuropsychopharmacology 32:2036–2045

    PubMed  CAS  Google Scholar 

  • Rubino T, Guidali C, Vigano D et al. (2008a) CB1 receptor stimulation in specific brain areas differently modulate anxiety-related behaviour. Neuropharmacology 54:151–160

    PubMed  CAS  Google Scholar 

  • Rubino T, Realini N, Castiglioni C et al. (2008b) Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex. Cereb Cortex 18:1292–1301

    PubMed  CAS  Google Scholar 

  • Rubino T, Vigano D, Realini N et al. (2008c) Chronic delta(9)-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology 33:2760–2771

    PubMed  CAS  Google Scholar 

  • Rush AJ, Weissenburger JE (1994) Melancholic symptom features and DSM-IV. Am J Psychiatry 151:489–498

    PubMed  CAS  Google Scholar 

  • Sagredo O, Ramos JA, Fernandez-Ruiz J et al. (2006) Chronic delta(9)-tetrahydrocannabinol administration affects serotonin levels in the rat frontal cortex. Naunyn Schmiedebergs Arch Pharmacol 372:313–317

    PubMed  CAS  Google Scholar 

  • Sanchis-Segura C, Cline BH, Marsicano G et al. (2004) Reduced sensitivity to reward in CB1 knockout mice. Psychopharmacology (Berl) 176:223–232

    CAS  Google Scholar 

  • Scheen AJ, Finer N, Hollander P et al. (2006) Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368:1660–1672

    PubMed  CAS  Google Scholar 

  • Scherma M, Medalie J, Fratta W et al. (2008) The endogenous cannabinoid anandamide has effects on motivation and anxiety that are revealed by fatty acid amide hydrolase (FAAH) inhibition. Neuropharmacology 54:129–140

    PubMed  CAS  Google Scholar 

  • Schofield D, Tennant C, Nash L et al. (2006) Reasons for cannabis use in psychosis. Aust NZ J Psychiatry 40:570–574

    Google Scholar 

  • Shearman LP, Rosko KM, Fleischer R et al. (2003) Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav Pharmacol 14:573–582

    PubMed  CAS  Google Scholar 

  • Silverstone PH, Silverstone T (2004) A review of acute treatments for bipolar depression. Int Clin Psychopharmacol 19:113–124

    PubMed  Google Scholar 

  • Sofia RD, Knobloch LC (1976) Comparative effects of various naturally occurring cannabinoids on food, sucrose and water consumption by rats. Pharmacol Biochem Behav 4:591–599

    PubMed  CAS  Google Scholar 

  • Statham DJ, Heath AC, Madden PA et al. (1998) Suicidal behaviour: an epidemiological and genetic study. Psychol Med 28:839–855

    PubMed  CAS  Google Scholar 

  • Steiner MA, Marsicano G, Nestler EJ et al. (2008a) Antidepressant-like behavioral effects of impaired cannabinoid receptor type 1 signalling coincide with exaggerated corticosterone secretion in mice. Psychoneuroendocrinology 33:54–67

    PubMed  CAS  Google Scholar 

  • Steiner MA, Wanisch K, Monory K et al. (2008b) Impaired cannabinoid receptor type 1 signalling interferes with stress-coping behavior in mice. Pharmacogenomics J 8:196–208

    PubMed  CAS  Google Scholar 

  • Sullivan PF, Neale MC, Kendler KS (2000) Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 157:1552–1562

    PubMed  CAS  Google Scholar 

  • Suzuki A, Josselyn SA, Frankland PW et al. (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795

    PubMed  CAS  Google Scholar 

  • Szuster RR, Pontius EB, Campos PE (1988) Marijuana sensitivity and panic anxiety. J Clin Psychiatry 49:427–429

    PubMed  CAS  Google Scholar 

  • Thomas H (1993) Psychiatric symptoms in cannabis users. Br J Psychiatry 163:141–149

    PubMed  CAS  Google Scholar 

  • Tzavara ET, Davis RJ, Perry KW et al. (2003) The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol 138:544–553

    PubMed  CAS  Google Scholar 

  • Uriguen L, Perez-Rial S, Ledent C et al. (2004) Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 46:966–973

    PubMed  CAS  Google Scholar 

  • Van Gaal L, Pi-Sunyer X, Despres JP et al. (2008) Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients: pooled 1-year data from the rimonabant in obesity (RIO) program. Diabetes Care 31(Suppl 2):S229–S240

    PubMed  Google Scholar 

  • Varvel SA, Wise LE, Niyuhire F et al. (2007) Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. Neuropsychopharmacology 32:1032–1041

    PubMed  CAS  Google Scholar 

  • Vinod KY, Arango V, Xie S et al. (2005) Elevated levels of endocannabinoids and CB1 receptor-mediated G-protein signalling in the prefrontal cortex of alcoholic suicide victims. Biol Psychiatry 57:480–486

    PubMed  CAS  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

CJH was supported during the writing of this review by Research for a Healthier Tomorrow, a component of the Advancing a Healthier Wisconsin endowment at the Medical College of Wisconsin and NIH grant R21 DA022439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia J. Hillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patel, S., Hillard, C.J. (2009). Role of Endocannabinoid Signaling in Anxiety and Depression. In: Kendall, D., Alexander, S. (eds) Behavioral Neurobiology of the Endocannabinoid System. Current Topics in Behavioral Neurosciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88955-7_14

Download citation

Publish with us

Policies and ethics