Skip to main content

Estimating the Relative Contributions of New Genes from Retrotransposition and Segmental Duplication Events during Mammalian Evolution

  • Conference paper
Comparative Genomics (RECOMB-CG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5267))

Included in the following conference series:

  • 586 Accesses

Abstract

Gene duplication has long been recognized as a major force in genome evolution and has recently been recognized as an important source of individual variation. For many years the origin of functional gene duplicates was assumed to be whole or partial genome duplication events, but recently retrotransposition has also been shown to contribute new functional protein coding genes and siRNA’s. Here we present a method for the identification and classification of retrotransposed and segmentally duplicated genes and pseudogenes based on local synteny. Using the results of this approach we compare the rates of segmental duplication and retrotransposition in five mammalian genomes and estimate the rate of new functional protein coding gene formation by each mechanism. We find that retrotransposition occurs at a much higher and temporally more variable rate than segmental duplication, and gives rise to many more duplicated sequences over time. While the chance that retrotransposed copies become functional is much lower than that of their segmentally duplicated counterparts, the higher rate of retrotransposition events leads to nearly equal contributions of new genes by each mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

    Google Scholar 

  2. Bailey, J.A., Eichler, E.E.: Primate segmental duplications: crucibles of evolution, diversity and disease. Nat. Rev. Genet. 7(7), 552–564 (2006)

    Article  Google Scholar 

  3. Bailey, J.A., Gu, Z., Clark, R.A., Reinert, K., Samonte, R.V., Schwartz, S., Adams, M.D., Myers, E.W., Li, P.W., Eichler, E.E.: Recent segmental duplications in the human genome. Science 297(5583), 1003–1007 (2002)

    Article  Google Scholar 

  4. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431(7011), 931–945 (2004)

    Google Scholar 

  5. Demuth, J.P., De Bie, T., Stajich, J.E., Cristianini, N., Hahn, M.W.: The evolution of mammalian gene families. PLoS ONE 1, e85 (2006)

    Article  Google Scholar 

  6. Emerson, J.J., Kaessmann, H., Betran, E., Long, M.: Extensive gene traffic on the mammalian x chromosome. Science 303(5657), 537–540 (2004)

    Article  Google Scholar 

  7. Fortna, A., Kim, Y., MacLaren, E., Marshall, K., Hahn, G., Meltesen, L., Brenton, M., Hink, R., Burgers, S., Hernandez-Boussard, T., Karimpour-Fard, A., Glueck, D., McGavran, L., Berry, R., Pollack, J., Sikela, J.M.: Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol. 2(7), E207 (2004)

    Article  Google Scholar 

  8. Hubbard, T., Andrews, D., Caccamo, M., Cameron, G., Chen, Y., Clamp, M., Clarke, L., Coates, G., Cox, T., Cunningham, F., Curwen, V., Cutts, T., Down, T., Durbin, R., Fernandez-Suarez, X.M., Gilbert, J., Hammond, M., Herrero, J., Hotz, H., Howe, K., Iyer, V., Jekosch, K., Kahari, A., Kasprzyk, A., Keefe, D., Keenan, S., Kokocinsci, F., London, D., Longden, I., McVicker, G., Melsopp, C., Meidl, P., Potter, S., Proctor, G., Rae, M., Rios, D., Schuster, M., Searle, S., Severin, J., Slater, G., Smedley, D., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Storey, R., Trevanion, S., Ureta-Vidal, A., Vogel, J., White, S., Woodwark, C., Birney, E.: Ensembl 2005. Nucleic Acids Res. 33, 447–453 (2005)

    Article  Google Scholar 

  9. Hurley, I., Hale, M.E., Prince, V.E.: Duplication events and the evolution of segmental identity. Evol. Dev. 7(6), 556–567 (2005)

    Article  Google Scholar 

  10. Huynen, M.A., Bork, P.: Measuring genome evolution. Proc. Natl. Acad. Sci. USA 95(11), 5849–5856 (1998)

    Article  Google Scholar 

  11. Marques, A.C., Dupanloup, I., Vinckenbosch, N., Reymond, A., Kaessmann, H.: Emergence of young human genes after a burst of retroposition in primates. PLoS Biol. 3(11), e357 (2005)

    Article  Google Scholar 

  12. Mills, R.E., Bennett, E.A., Iskow, R.C., Devine, S.E.: Which transposable elements are active in the human genome? Trends Genet. 23(4), 183–191 (2007)

    Article  Google Scholar 

  13. Nekrutenko, A., Makova, K.D., Li, W.H.: The k(a)/k(s) ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. Genome Res. 12(1), 198–202 (2002)

    Article  Google Scholar 

  14. Ohno, S.: Evolution by gene duplication. Allen and Unwin, London (1970)

    Google Scholar 

  15. Ohshima, K., Hattori, M., Yada, T., Gojobori, T., Sakaki, Y., Okada, N.: Whole-genome screening indicates a possible burst of formation of processed pseudogenes and alu repeats by particular l1 subfamilies in ancestral primates. Genome Biol. 4(11), R74 (2003)

    Article  Google Scholar 

  16. Petrov, D.A., Hartl, D.L.: Patterns of nucleotide substitution in drosophila and mammalian genomes. Proc. Natl. Acad. Sci. USA 96(4), 1475–1479 (1999)

    Article  Google Scholar 

  17. Potrzebowski, L., Vinckenbosch, N., Marques, A.C., Chalme, F., Jègou, B., Kaessmann, H.: Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol. 6(4), e80 (2008)

    Article  Google Scholar 

  18. Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L., Gonzalez, J.R., Gratacos, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M.J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Armengol, L., Conrad, D.F., Estivill, X., Tyler-Smith, C., Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W., Hurles, M.E.: Global variation in copy number in the human genome. Nature 444(7118), 444–454 (2006)

    Article  Google Scholar 

  19. Rocha, E.P.: Inference and analysis of the relative stability of bacterial chromosomes. Mol. Biol. Evol. 23(3), 513–522 (2006)

    Article  Google Scholar 

  20. Rogozin, I.B., Wolf, Y.I., Sorokin, A.V., Mirkin, B.G., Koonin, E.V.: Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr. Biol. 13(17), 1512–1517 (2003)

    Article  Google Scholar 

  21. Sakai, H., Koyanagi, K.O., Imanishi, T., Itoh, T., Gojobori, T.: Frequent emergence and functional resurrection of processed pseudogenes in the human and mouse genomes. Gene. 389(2), 196–203 (2007)

    Article  Google Scholar 

  22. She, X., Cheng, Z., Zollner, S., Church, D.M., Eichler, E.E.: Mouse segmental duplication and copy number variation. Nat. Genet. (2008)

    Google Scholar 

  23. She, X., Jiang, Z., Clark, R.A., Liu, G., Cheng, Z., Tuzun, E., Church, D.M., Sutton, G., Halpern, A.L., Eichler, E.E.: Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 431(7011), 927–930 (2004)

    Article  Google Scholar 

  24. She, X., Liu, G., Ventura, M., Zhao, S., Misceo, D., Roberto, R., Cardone, M.F., Rocchi, M., Green, E.D., Archidiacano, N., Eichler, E.E.: A preliminary comparative analysis of primate segmental duplications shows elevated substitution rates and a great-ape expansion of intrachromosomal duplications. Genome Res. 16(5), 576–583 (2006)

    Article  Google Scholar 

  25. Shemesh, R., Novik, A., Edelheit, S., Sorek, R.: Genomic fossils as a snapshot of the human transcriptome. Proc. Natl. Acad. Sci. USA 103(5), 1364–1369 (2006)

    Article  Google Scholar 

  26. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. W.H. Freeman and Company, San Francisco (1973)

    MATH  Google Scholar 

  27. Svensson, O., Arvestad, L., Lagergren, J.: Genome-wide survey for biologically functional pseudogenes. PLoS Comput. Biol. 2(5), e46 (2006)

    Article  Google Scholar 

  28. Tam, O.H., Aravin, A.A., Stein, P., Girard, A., Murchison, E.P., Cheloufi, S., Hodges, E., Anger, M., Sachidanandam, R., Schultz, R.M., Hannon, G.J.: Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453(7194), 534–538 (2008)

    Article  Google Scholar 

  29. Torrents, D., Suyama, M., Zdobnov, E., Bork, P.: A genome-wide survey of human pseudogenes. Genome Res. 13(12), 2559–2567 (2003)

    Article  Google Scholar 

  30. Ureta-Vidal, A., Ettwiller, L., Birney, E.: Comparative genomics: genome-wide analysis in metazoan eukaryotes. Nat. Rev. Genet. 4(4), 251–262 (2003)

    Article  Google Scholar 

  31. Van de Peer, Y., Taylor, J.S., Meyer, A.: Are all fishes ancient polyploids? J. Struct. Funct. Genomics 3(1-4), 65–73 (2003)

    Article  Google Scholar 

  32. Vinckenbosch, N., Dupanloup, I., Kaessmann, H.: Evolutionary fate of retroposed gene copies in the human genome. Proc. Natl. Acad. Sci. USA 103(9), 3220–3225 (2006)

    Article  Google Scholar 

  33. Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y., Chiba, H., Kohara, Y., Kono, T., Nakano, T., Surani, M.A., Sakaki, Y., Sasaki, H.: Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453(7194), 539–543 (2008)

    Article  Google Scholar 

  34. Yang, Z.: Paml: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13(5), 555–556 (1997)

    Google Scholar 

  35. Zhang, Z., Carriero, N., Gerstein, M.: Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet. 20(2), 62–67 (2004)

    Article  Google Scholar 

  36. Zhang, Z., Carriero, N., Zheng, D., Karro, J., Harrison, P.M., Gerstein, M.: Pseudopipe: an automated pseudogene identification pipeline. Bioinformatics 22(12), 1437–1439 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jun, J., Ryvkin, P., Hemphill, E., Măndoiu, I., Nelson, C. (2008). Estimating the Relative Contributions of New Genes from Retrotransposition and Segmental Duplication Events during Mammalian Evolution. In: Nelson, C.E., Vialette, S. (eds) Comparative Genomics. RECOMB-CG 2008. Lecture Notes in Computer Science(), vol 5267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87989-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87989-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87988-6

  • Online ISBN: 978-3-540-87989-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics