Skip to main content

Mycorrhiza Helper Bacteria

  • Chapter
Mycorrhiza

Mycorrhizal symbiosis should not be considered merely as a bipartite plant-fungus interaction, but should instead incorporate the associated organisms. These mycorrhiza-associated organisms are known to influence each other mutually, the outcome of which is described as the “mycorrhizosphere” (Foster and Marks 1966; Meyer and Linderman 1986; Frey-Klett and Garbaye 2005). The mycorrhizosphere comprises mycorrhizas, extramatrical mycelium and the associated microorganisms. In the same way the rhizospheres exert a pressure on microbial populations (Barea et al. 2005), the mycorrhizal roots and hyphae of mycorrhizal fungi (MF) shape the bacterial species composition due to root and hyphal exudation and turnover (Bowen 1993; Morgan et al. 2005). This “mycorrhizosphere effect” may lead to improved plant nutrition, growth and disease resistance (Linderman 1988; Frey-Klett et al. 2005). Determining the functional significance of the mycorrhizosphere organisms for plant productivity presents a major challenge for the future (Artursson et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Fattah GM, Mohamedin AH (2000) Interactions between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 32:401-409

    Google Scholar 

  • Ali NA, Jackson RM (1989) Stimulation of germination of spores of some ectomycorrhizal fungi by other micro-organisms. Mycol Res 93:182-186

    Google Scholar 

  • Ames BN (1989) Mycorrhiza development in onion in response to chitin-decomposing actino- mycetes. New Phytol 112:423-427

    Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol 7:1952-1966

    CAS  PubMed  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8: 1-10

    CAS  PubMed  Google Scholar 

  • Asiegbu F, Daniel G, Johansson M (1993) Studies on the infection of Norway spruce roots by Heterobasidion annosum. Can J Bot 71:1552-1561

    Google Scholar 

  • Aspray TJ, Frey-Klett P, Jones JE, Whipps JM, Garbaye J, Bending GD (2006a) Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza 10.1007/s00572-006-0068-3 (in press)

    Google Scholar 

  • Aspray TJ, Eirian Jones E, Whipps JM, Bending GD (2006b) Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestris-Lactarius rufus symbiosis. FEMS Microbiol Ecol 56:25-33

    CAS  PubMed  Google Scholar 

  • Azcon-Aguilar C, Diaz-Rodriguez RM, Barea JM (1986) Effect of soil microorganisms on spore germination of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Trans Br Mycol Soc 86:337-340

    Google Scholar 

  • Barbieri E, Potenza L, Rossi I, Sisti D, Giomaro G, Rossetti S, Beimfohr C, Stocchi V (2000) Phylogenetic characterization and in situ detection of a Cytophaga-Flexibacter-Bacteroides phylogroup bacterium in Tuber borchii Vittad ectomycorrhizal mycelium. Appl Environ Microbiol 66:5035-5042

    CAS  PubMed  Google Scholar 

  • Barbieri E, Gioacchini AM, Zambonelli A, Bertini I, Stocchi V (2005) Determination of microbial volatile organic compounds from Staphylococcus pasteuri against Tuber borchii using solid phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Comm Mass Spectrom 15:3411-3415

    Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Applied Environ Microbiol 64:2304-2307

    CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761-1778

    CAS  PubMed  Google Scholar 

  • Becker DM, Bagley ST, Podila GK (1999) Effects of mycorrhiza-associated streptomycetes on growth of Laccaria bicolor, Cenococcum geophilum, and Armillaria species and on gene expression in Laccaria bicolor. Mycologia 91:33-40

    Google Scholar 

  • Bedini, S, Bagnoli G, Sbrana C, Leporini C, Tola E, Dunne C, Filippi C, D’Andrea F, O’Gara F, Nuti MP (1999) Pseudomonads isolated from within fruit bodies of Tuber borchii are capable of producing biological control or phytostimulatory compounds in pure culture. Symbiosis 26:223-236

    Google Scholar 

  • Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol Ecol 39:219-227

    CAS  PubMed  Google Scholar 

  • Bertaux J, Schmid M, Prevost-Boure NC, Churin JL, Hartmann A, Garbaye J, Frey-Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 69:4243-4248

    CAS  PubMed  Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocelluar bacteria. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 81:365-371

    CAS  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005-3010

    CAS  PubMed  Google Scholar 

  • Bowen GB (1993) The ecology of ectomycorrhiza formation and functioning. Plant Soil 159:61-67

    Google Scholar 

  • Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11:119-126

    Google Scholar 

  • Brulé C, Frey-Klett P, Pierrat JC, Courrier S, Gérard F, Lemoine MC, Rousselet JL, Sommer J, Garbaye J (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and effect of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem 33: 1683-1694

    Google Scholar 

  • Budi SW, van Tuinen D, Martinotti MG, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soil-borne fungal pathogens. Appl Environ Microbiol 65:5148-5150

    CAS  PubMed  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Applied and Environmental Microbiology 72:1258-1266

    CAS  PubMed  Google Scholar 

  • Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem 276:244-250

    CAS  PubMed  Google Scholar 

  • Danell E, Alström S, Ternström A (1993) Pseudomonas fluorescens in association with fruit bodies of the ectomycorrhizal mushroom Cantharellus cibarius. Mycol Res 97:1148-1152

    Google Scholar 

  • De Oliveira VL, Garbaye J (1989) Les microorganismes auxiliaires de l’etablissement des symbioses ectomycorrhiziennes. Eur J For Pathol 19:54-64

    Google Scholar 

  • Deveau A, Palin B, Delaruelle C, Peter M. Kohler A, Pierrat JC, Sarniguet A, Garbaye J, Martin F, Frey-Klett P (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytologist 175:743-755

    CAS  PubMed  Google Scholar 

  • Dunstan WA, Malajczuk N, Dell B (1998) Effects of bacteria on mycorrhizal development and growth of container grown Eucalyptus diversicolor F. Muell. seedlings. Plant Soil 201:241-249

    CAS  Google Scholar 

  • Duponnois R (2006) Bacteria helping mycorrhiza development. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Heildelberg, pp 297-310

    Google Scholar 

  • Duponnois R, Garbaye J (1990) Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Can J Bot 68:2148-2152

    Google Scholar 

  • Duponnois R, Garbaye J (1991) Mycorrhization helper bacteria associated with the Douglas fir Laccaria laccata symbiosis: effects in vitro and in glasshouse conditions. Ann Sci For 48:239-251

    Google Scholar 

  • Duponnois R, Kisa M (2006) The possible role of trehalose in the mycorrhiza helper effect. Can J Bot 84:1005-1008

    Google Scholar 

  • Duponnois R, Garbaye J, Bouchard D, Churin JL (1993) The fungus-specificity of mycorrhization helper bacteria (MHBs) used as an alternative to soil fumigation for ectomycorrhizal inoculation of bare-root Douglasfir planting stocks with Laccaria laccata. Plant Soil 157:257-262

    Google Scholar 

  • Duponnois R, Assikbetse K, Ramanankierana H, Kisa M, Thioulouse J, Lepage M (2006) Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holo-sericea A. Cunn. Ex G. Don and Scleroderma dictyosporum isolates. FEMS Microbiol Ecol 56:292-303

    CAS  PubMed  Google Scholar 

  • Fossdal CG, Sharma P, Lönneborg A (2001) Isolation of the first putative peroxidase cDNA from a conifer and the local and systemic accumulation of related proteins upon pathogen infection. Plant Mol Biol 47:423-435

    CAS  PubMed  Google Scholar 

  • Foster RC, Marks GC (1966) The fine structure of the mycorrhizas of Pinus radiata. Australian J Biol Sci 19:1027-1038

    Google Scholar 

  • Founoune H, Duponnois R, Ba AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002) Mycorrhiza helper bacteria stimulated ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol 153:81-89

    Google Scholar 

  • Frey-Klett P, Garbaye J (2005) Mycorrhiza helper bacteria: a promising model for the genomic analysis of fungal-bacterial interactions. New Phytol 168:4-8

    CAS  PubMed  Google Scholar 

  • Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl Environ Microbiol 63:139-144

    CAS  PubMed  Google Scholar 

  • Frey-Klett P, Churin J-L, Pierrat J-C, Garbaye J (1999) Dose effect in the dual inoculation of an ectomycorrhizal fungus and a mycorrhiza helper bacterium in two forest nurseries. Soil Biol Biochem 31:1555-1562

    CAS  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317-328

    PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) Tansley Review: The mycorrhiza helper bacteria revisited. New Phytologist 176:22-36

    CAS  PubMed  Google Scholar 

  • Fries N (1987) Ecological and evolutionary aspects of spore germination in the higher basidiomycetes. Trans Br Mycol Soc 88:1-7

    Google Scholar 

  • Gamalero E, Fracchia L, Cavaletto M, Garbaye J, Frey-Klett P, Varese GC, Martinotti MG (2003) Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol Biochem 35:55-65

    CAS  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:229-234

    Google Scholar 

  • Garbaye J (1991) Biological interactions in the mycorhizospere. Experientia 47:370-375

    Google Scholar 

  • Garbaye J (1994) Mycorrhiza helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197-210

    Google Scholar 

  • Garbaye J, Bowen GD (1987) Effect of different microflora on the success of ectomycorrhizal inoculation of Pinus radiata. Can J For Res 17:941-943

    Google Scholar 

  • Garbaye J, Bowen GD (1989) Stimulation of mycorrhizal infection of Pinus radiata by some microorganisms associated with the mantle of ectomycorrhizas. New Phytol 112:383-388

    Google Scholar 

  • Garbaye J, Churin JL, Robin Duponnois R (1992) Effects of substrate sterilization, fungicide treatment, and mycorrhization helper bacteria on ectomycorrhizal formation of pedunculate oak (Quercus robur) inoculated with Laccaria laccata in two peat bare-root nurseries. Biol Fertil Soils 13:55-57

    CAS  Google Scholar 

  • Garbaye J, Churin JL, Robin Duponnois R (1992) Effects of substrate sterilization, fungicide treatment, and mycorrhization helper bacteria on ectomycorrhizal formation of pedunculate oak (Quercus robur) inoculated with Laccaria laccata in two peat bare-root nurseries. Biol Fertil Soils 13:55-57

    CAS  Google Scholar 

  • Garbaye J, Duponnois R (1992) Specificity and function of mycorrhization helper bacteria (MHB) associated with the Pseudotsuga menziesii-Laccaria laccata symbiosis. Symbiosis 14:335-344

    Google Scholar 

  • Gazzanelli G, Malatesta M, Pianetti A, Baffone W, Stocchi V, Citterio B (1999) Bacteria associated to fruit bodies of the ectomycorrhizal fungi Tuber borchii Vittad. Symbiosis 26:211-222

    Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65: 5571-5575

    CAS  PubMed  Google Scholar 

  • Grimaldi B, de Raaf MA, Filetici P, Ottonello S, Ballario P (2005) Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics. Curr Genet 48:69-74

    CAS  PubMed  Google Scholar 

  • Gryndler M, Vosatka M (1996) The response of Glomus fistulosum-maize mycorrhiza to treatments with culture fractions from Pseudomonas putida. Mycorrhiza 6:207-211

    Google Scholar 

  • Heinonsalo J, Frey-Klett P, Pierrat J-C, Churin J-L, Vairelles D, Garbaye J (2004) Fate, tree growth effect and potential impact on soil microbial communities of mycorrhizal and bacterial inoculation in a forest plantation. Soil Biol Biochem 36:211-216

    CAS  Google Scholar 

  • Helber N, Requena N (2008) Expression of the fluorescence markers DsRed and GFP fused to a nuclear localization signal in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 177:537-548

    CAS  PubMed  Google Scholar 

  • Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919-1924

    CAS  PubMed  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258-267

    CAS  PubMed  Google Scholar 

  • Keller S, Schneider K, Sussmuth RD (2006) Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. J Antibiot (Tokyo) 59:801-803

    CAS  Google Scholar 

  • Krishna KR, Balakrishna AN, Bagyaraj DJ (1982) Interaction between a vesicular arbuscular mycorrhizal fungus and Streptomyces cinnamomeus and their effects on finger millet. New Phytol 93:401-405

    Google Scholar 

  • Lagrange H, Jay-Allgmand C, Lapeyrie F (2001) Rutin, the phenylglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growh at picomolar concentrations. New Phytol 149:349-355

    CAS  Google Scholar 

  • Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defense response by a mycorrhiza helper bacterium. New Phytol 174:892-903

    CAS  PubMed  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora - the mycorrhizosphere effect. Phytopathology 78:366-371

    Google Scholar 

  • Maier A (2003) Einfluss bakterieller Stoffwechselprodukte auf Wachstum und Proteom des Ektomykorrhizapilzes Amanita muscaria. PhD thesis, University of Tübingen, Tübingen, Germany

    Google Scholar 

  • Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycol Progress 3:129-136

    Google Scholar 

  • Marschner P, Timonen S (2006) Bacterial community composition and activity in rhizospheres of roots colonised by arbuscular mycorrhizal fungi. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere Springer, Heidelberg, pp 139-154

    Google Scholar 

  • Mayo K, Davis R, Motta J (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78:426-431

    Google Scholar 

  • Meyer JR, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular-arbuscular fungi and a plant growth promoting bacterium. Soil Biol Biochem 18:185-190

    CAS  Google Scholar 

  • Mogge B, Loferer C, Agerer R, Hutzler P, Hartmann A (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271-278

    Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729-1739

    CAS  PubMed  Google Scholar 

  • Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509-520

    CAS  PubMed  Google Scholar 

  • Mugnier J, Mosse B (1987) Spore germination and viability of a vesicular-arbuscular mycorrhizal fungus, Glomus mosseae. Trans Br Mycol Soc 88:411-413

    Google Scholar 

  • Muller T, Benjdia M, Avolio M, Voigt B, Menzel D, Pardo A, Frommer WB, Wipf D (2006) Functional expression of the green fluorescent protein in the ectomycorrhizal model fungus Hebeloma cylindrosporum. Mycorrhiza 16:437-442

    PubMed  Google Scholar 

  • Paula MA, Urquiaga S, Siqueira JO, Döbereiner J (1992) Synergistic effects of vesicular-arbuscular mycorrhizal fungi and diazotrophic bacteria on nutrition and growth of sweet potato (Ipomoea batatas). Biol Fertil Soils 14:61-66

    CAS  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris- Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743-751

    Google Scholar 

  • Rao NSS, Tilak KVBR, Singh CS (1985) Synergistic effect of vesicular-arbuscular mycorrhizae and Azospirillum brasiliense on the growth of barley in pots. Soil Biol Biochem 1:121-129

    Google Scholar 

  • Reddy MS, Satyanarayana T (2006) Interactions between ectomycorrhizal fungi and rhizospheric microbes In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Heidelberg, pp 245-264

    Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136:667-677

    Google Scholar 

  • Riedlinger J (2006) Die stofflichen Grundlagen der Modulation des Myzelwachstums von symbiotischen und pathogenen Pilzen durch Streptomyzeten. PhD thesis, University of Tübingen, Tübingen, Germany

    Google Scholar 

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP (2006) Auxofuran, a novel substance stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. Appl Environ Microbiol 72:3550-3557

    CAS  PubMed  Google Scholar 

  • Rincon A, Ruiz-Diez B, Garcia-Fraile S, Garcia JA, Fernandez-Pascual M, Pueyo JJ, de Felipe MR (2005) Colonisation of Pinus halepensis roots by Pseudomonas fluorescens and interaction with the ectomycorrhizal fungus Suillus granulatus. FEMS Microbiol Ecol 51:303-311

    CAS  PubMed  Google Scholar 

  • Sarand I, Timonen S, Nurmiaho-Lassila E-L, Koivula T, Haahtela K, Romantschuk M, Sen R (1998) Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseu-domonads in Scots pine mycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiol Ecol 27:112-115

    Google Scholar 

  • Schelkle M, Peterson RL (1996) Suppression of common root pathogens by helper bacteria and ectomycorrhizal fungi in vitro. Mycorrhiza 6:481-485

    Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205-216

    CAS  PubMed  Google Scholar 

  • Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka MT (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52:77-85

    CAS  PubMed  Google Scholar 

  • Tarkka MT, Schrey S, Nehls U (2006) The alpha-tubulin gene AmTuba1: A marker for rapid mycelial growth in the ectomycorrhizal basidiomycete Amanita muscaria. Curr Genet 49:294-301

    CAS  PubMed  Google Scholar 

  • Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408-4412

    CAS  PubMed  Google Scholar 

  • Torsvik, V, Salte, K, Sorheim, R, Goksoyr, J (1990) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl Environ Microbiol 56:776-781

    CAS  PubMed  Google Scholar 

  • Vivas A, Azcón R, Biró B, Barea JM, Ruiz-Lozano JM (2003a) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49:577-588

    CAS  PubMed  Google Scholar 

  • Vivas A, Marulanda A, Gomez M, Barea JM, Azcon R (2003b) Physiological characteristics (SDH and ALP activities) of arbuscular mycorrhizal colonization as affected by Bacillus thuringiensis inoculation under two phosphorus levels. Soil Biol Biochem 35:987-996

    CAS  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcon R (2003c) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249-256

    PubMed  Google Scholar 

  • Vivas A, Voros I, Biro B, Campos E, Barea JM, Azcon R (2003d) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179-189

    CAS  PubMed  Google Scholar 

  • Vivas A, Barea JM, Azcon R (2005) Brevibacillus brevis isolated from cadmium- or zinc-contaminated soils improves in vitro spore germination and growth of Glomus mosseae under high Cd or Zn Concentrations. Microbial Ecol 49:416-424

    CAS  Google Scholar 

  • Vosatka M, Gryndler M (1999) Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol 11:245-251

    Google Scholar 

  • Wilkinson KG, Dixon KW, Sivasithamparam K (1989) Interaction of soil bacteria, mycorrhizal fungi and orchid seed in relation to germination of Australian orchids. New Phytol 112:429-435

    Google Scholar 

  • Wilkinson KG, Dixon KW, Sivasithamparam K, Ghisalberti EL (1994) Effect of IAA on symbiotic germination of an Australian orchid and its production by orchid-associated bacteria. Plant Soil 159:291-295

    CAS  Google Scholar 

  • Will ME, Sylvia DM (1990) Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Appl Environ Microbiol 56:2073-2079

    PubMed  Google Scholar 

  • Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471-478

    CAS  Google Scholar 

  • Xie ZP, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogeli-Lange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519-1525

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika T. Tarkka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarkka, M.T., Frey-Klett, P. (2008). Mycorrhiza Helper Bacteria. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_6

Download citation

Publish with us

Policies and ethics