Skip to main content

Full Vectorial, Intense Ultrashort Pulse Propagators: Derivation and Applications

  • Chapter
Progress in Ultrafast Intense Laser Science II

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 85))

Summary

Rapid progress in recent years in the development of high power ultra-short pulse laser systems has opened up a whole new vista of applications and computational challenges. New experimental developments in the field of extreme nonlinear optics will require more rigorous electromagnetic propagation models beyond those existing in the current literature. In this chapter, we derive a 3D time domain unidirectional vector Maxwell propagator that resolves the underlying optical carrier wave while allowing propagation over macroscopic many-meter distances. Our model allows for extreme focusing conditions down to the order of the wavelength in the material. A novel aspect of our approach is that the pulse propagator is designed to faithfully capture the light-material interaction over the broad spectral landscape of relevance to the interaction. Moreover the model provides a seamless and physically self-consistent means of deriving the many ultra-short pulse propagation equations presented in the literature. Amongst current applications that are most challenging from a computational point of view are those involving critical self-focusing with concomitant explosive growth in the generated light spectrum. Specific application areas chosen for illustration include multiple filament formation during propagation of ultra-intense femtosecond laser pulses in air and nonlinear self-trapping in condensed media. These examples exhibit rather different aspects of intense femtosecond pulse propagation and demonstrate the robustness and flexibility of our recently formulated unidirectional Maxwell propagator. A clear message to emerge from our study is the inadequacy of spectrally local light-material interaction models when nonlinear coupling exists over many hundreds of nanometer frequency bandwidths. More sophisticated, computationally feasible, models of nonlinear dispersion are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).

    Article  ADS  Google Scholar 

  2. A. Braun et al., Opt. Lett. 20, 73 (1995).

    Article  ADS  Google Scholar 

  3. A. Brodeur et al., Opt. Lett. 22, 304 (1997).

    Article  ADS  Google Scholar 

  4. H. R. Lange et al., Opt. Lett. 23, 120 (1998).

    Article  ADS  Google Scholar 

  5. E. T. J. Nibbering et al., Opt. Lett. 21, 62 (1996).

    Article  ADS  Google Scholar 

  6. O. G. Kosareva et al., Opt. Lett. 22, 1332 (1997).

    Article  ADS  Google Scholar 

  7. M. Mlejnek, E. M. Wright, and J. V. Moloney, Opt. Lett. 23, 382 (1998).

    Article  ADS  Google Scholar 

  8. B. La Fontaine et al., Phys. of Plasmas 6, 1615 (1999).

    Article  ADS  Google Scholar 

  9. M. Mlejnek, E. M. Wright, and J. V. Moloney, Phys. Rev. E 58, 4903 (1998).

    Article  ADS  Google Scholar 

  10. J. Schwartz et al., Opt. Commun. 180, 383 (2000).

    Article  ADS  Google Scholar 

  11. A. Chiron et al., Eur. Phys. J. D 6, 383 (1999).

    Article  ADS  Google Scholar 

  12. A. Couairon and L. Bergé, Phys. of Plasmas 7, 193 (2000).

    Article  ADS  Google Scholar 

  13. L. Bergé and A. Couairon, Phys. of Plasmas 7, 210 (2000).

    Article  ADS  Google Scholar 

  14. S. Petit, A. Talebpour, A. Proulx, and S. L. Chin, Opt. Commun. 175, 323 (2000).

    Article  ADS  Google Scholar 

  15. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. Lett. 83, 2938 (1999).

    Article  ADS  Google Scholar 

  16. A. Talebpour, S. Petit, and S. L. Chin, Opt. Commun. 171, 285 (1999).

    Article  ADS  Google Scholar 

  17. J. V. Moloney, M. Kolesik, M. Mlejnek, and E. M. Wright, Chaos 10, 559 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, Phys. Rev. E 61, 4540 (2000).

    Article  ADS  Google Scholar 

  19. J. Noack and A. Vogel, IEEE J. Quantum Electron. 35, 1156 (1999).

    Article  ADS  Google Scholar 

  20. S. Tzortzakis et al., Phys. Rev. Lett. 87, 213902 (2001).

    Article  ADS  Google Scholar 

  21. M. Kolesik, G. Katona, J.V. Moloney, and E. M. Wright, Phys. Rev. Lett. 91, 043905 (2003).

    Article  ADS  Google Scholar 

  22. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, Appl. Phys. B 77, 185 (2003).

    Article  ADS  Google Scholar 

  23. W. Liu et al., Opt. Commun. 202, 189 (2002).

    Article  ADS  Google Scholar 

  24. J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002).

    Article  ADS  Google Scholar 

  25. J. M. Dudley et al., J. Opt. Soc. Am. B 19, 765 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  26. A. L. Gaeta, Opt. Lett. 27, 924 (2002).

    Article  ADS  Google Scholar 

  27. L. Tong et al., Nature 426, 816 (2003).

    Article  ADS  Google Scholar 

  28. A. Couairon and L. Bergé, Phys. Rev. Lett. 88, 135003 (2002).

    Article  ADS  Google Scholar 

  29. D. Hollenbeck and C. D. Cantrell, J. Opt. Soc. Am. B 19, 2886 (2002).

    Article  ADS  Google Scholar 

  30. V. P. Kandidov et al., Appl. Phys. B 77, 149 (2003).

    Article  ADS  Google Scholar 

  31. M. Geissler et al., Phys. Rev. Lett. 83, 2930 (1999).

    Article  ADS  Google Scholar 

  32. A. C. Newell and J. V. Moloney, Nonlinear optics (Addison-Wesley, Redwood City, CA, 1992).

    Google Scholar 

  33. T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).

    Article  ADS  Google Scholar 

  34. A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).

    Article  ADS  Google Scholar 

  35. E. R. Peck and K. Reeder, J. Opt. Soc. Am. 62, 958 (1972).

    Article  ADS  Google Scholar 

  36. A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000).

    Article  ADS  Google Scholar 

  37. G. Méchain et al., Appl. Phys. B 79, 379 (2004).

    Article  Google Scholar 

  38. S. Champeaux and L. Bergé, Phys. Rev. E 71, 046604 (2005).

    Article  ADS  Google Scholar 

  39. M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 92, 253901 (2004).

    Article  ADS  Google Scholar 

  40. W. Lee Smith, P. Liu, and N. Bloembergen, Phys. Rev. A 15, 2396 (1977).

    Article  ADS  Google Scholar 

  41. A. Brodeur and S. L. Chin, Phys. Rev. Lett. 80, 4406 (1998).

    Article  ADS  Google Scholar 

  42. A. Brodeur and S. L. Chin, J. Opt. Soc. Am. B 16, 637 (1999).

    Article  ADS  Google Scholar 

  43. C. Nagura et al., Appl. Opt. 41, 3735 (2002).

    Article  ADS  Google Scholar 

  44. Y.-D. Qin, D.-L. Wang, S.-F. Wang, and Q.-H. Gong, Chin. Phys. Lett. 18, 390 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moloney, J.V., Kolesik, M. (2007). Full Vectorial, Intense Ultrashort Pulse Propagators: Derivation and Applications. In: Progress in Ultrafast Intense Laser Science II. Springer Series in Chemical Physics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38156-3_13

Download citation

Publish with us

Policies and ethics