Skip to main content

Limit of Spatial Resolution in FDG-PET due to Annihilation Photon Non-Collinearity

  • Conference paper
World Congress on Medical Physics and Biomedical Engineering 2006

Part of the book series: IFMBE Proceedings ((IFMBE,volume 14))

Abstract

We provide a new viewpoint for a fundamental but little investigated problem in positron emission tomography (PET): non-collinearity of annihilation radiation from the human body. The cause of the angular deviation from 180 deg is described as well as how to evaluate it under a spatially distributed radiation source and a limited acquisition time. An elegant conversion from the photopeak spectrum into the angular distribution is done based on the conservation laws of momentum and energy to avoid problems in the direct measurement. A healthy volunteer study using 18FDG and a Ge semiconductor detector reveals the distribution as a Gaussian function with the FWHM of 0.54 deg. Finally, we calculate the physical limit of 18FDG-PET spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery... Nature Rev Drug Discov 2: 123–131

    Article  Google Scholar 

  2. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nature Rev Cancer 2: 683–693

    Article  Google Scholar 

  3. Budinger TF (1998) PET instrumentation: What are the limits? Semin Nucl Med 28: 247–267

    Article  Google Scholar 

  4. Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect... J Nucl Med 44: 781–799

    Google Scholar 

  5. Colombino P, Fiscella B, Trossi L (1965) Study of positronium in water and ice... IL NUOVO CIMENT 38: 707–723

    Article  Google Scholar 

  6. Derenzo SE, Budinger TF (1977) Resolution limit for positron-imaging devices. J Nucl Med 18: 491–492

    Google Scholar 

  7. Palmer MR, Zhu XP et al. (2005) Modeling and simulation of positron range effects... IEEE Trans Nucl Sci 52: 1391–1395

    Article  Google Scholar 

  8. DeZafra RL (1959) Effect of impurities of angular correlation of positron annihilation radiation. Phys Rev 113: 1547–1555

    Article  Google Scholar 

  9. Trumpy G (1960) Positron annihilation in aqueous solutions. Phys Rev 118: 668–674

    Article  Google Scholar 

  10. DeZafra RL, Joyner WT (1958) Temperature effect on positron annihilation in condensed matter. Phys Rev 112: 19–29

    Article  Google Scholar 

  11. Fujiwara K, Sueoka O (1966) A precise measurement of the angular correlation of annihilation radiation in copper single crystals. J Phys Soc Jpn 21: 1947–1955

    Article  Google Scholar 

  12. Hotz HP et al. (1968) Measurement of positron annihilation line shapes with a Ge(Li) detector. Phys Rev 170: 351–355

    Article  Google Scholar 

  13. Gambhir SS et al. (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42: 1S–93S

    Google Scholar 

  14. Yamaya T et al. (2005) Transaxial system model for jPET-D4 image reconstruction. Phys Med Biol 50: 5339–5355

    Article  Google Scholar 

  15. Orita N et al. (2005) Three-dimensional array of scintillation crystals with proper reflector... IEEE Trans Nucl Sci 52: 8–14

    Article  Google Scholar 

  16. Derenzo SE (1986) Mathematical removal of positron range blurring... IEEE Trans Nucl Sci 33: 565–569

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kengo Shibuya .

Editor information

R. Magjarevic J. H. Nagel

Rights and permissions

Reprints and permissions

Copyright information

© 2007 International Federation for Medical and Biological Engineering

About this paper

Cite this paper

Shibuya, K. et al. (2007). Limit of Spatial Resolution in FDG-PET due to Annihilation Photon Non-Collinearity. In: Magjarevic, R., Nagel, J.H. (eds) World Congress on Medical Physics and Biomedical Engineering 2006. IFMBE Proceedings, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36841-0_411

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36841-0_411

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36839-7

  • Online ISBN: 978-3-540-36841-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics