Skip to main content

Peak Stress Obliquity in Drained and Undrained Sands. Simulations with Neohypoplasticity

  • Chapter
  • First Online:
Holistic Simulation of Geotechnical Installation Processes

Abstract

The difference between undrained and drained peak friction angle is considerable (up tp \(10^\circ \)), despite identical densities and pressures (at peak). This cannot be explained using the elastoplastic formalism. An attempt is made to describe this effect with neohypoplasticity. For this purpose two types of nonlinearity are used, the well-known term \(Y m_{ij} \Vert \dot{\epsilon }\Vert \) and the novel skew-symmetric correction tensor which is added to the elastic stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For strain controlled tests, the plastic multiplier is \(\dot{\lambda }= \mathbf n :\mathsf{E}: {\varvec{\dot{\epsilon }}} / (K + \mathbf n :\mathsf{E}: \mathbf m )\) with the hardening modulus K, flow rule \(\mathbf m \) and the loading direction \(\mathbf n \).

  2. 2.

    We will use the hyperelastic stiffness \(\mathsf{E}\) obtained from numerous high-quality small-strain tests [6, 13], see Sect. 4.1.

  3. 3.

    Note that the pictures in [5] were taken after several percent of axial deformation.

  4. 4.

    In the description of experimental results, we use the conventional Roscoe invariants \(p = \frac{1}{3} (\sigma _{1} + 2 \sigma _{2} )/3\) and \(q = \sigma _{1} -\sigma _{2} \) with geotechnical sign convention for principal stresses \(\sigma _i\) and strains \(\varepsilon _i\).

  5. 5.

    This ratio is not constant and about 1.8 for triaxial compression and 2.4 for triaxial extension.

  6. 6.

    The hyperelastic stiffness \(E_{ijkl}\) is comparable to the isotropic elastic stiffness (using the Poisson number \(\nu \)) on the P-axis only.

  7. 7.

    We substitute \( {\varvec{\tau }}= {\varvec{\sigma }} \lambda \) into \(\bar{\psi }\) and then differentiate the equation \(\bar{\psi }({\varvec{\tau }}) = \lambda ^m \bar{\psi }({\varvec{\sigma }})\) twice with respect to \(\lambda \) using the chain rule on the left-hand side. The resulting equation \({\varvec{\sigma }}: \frac{\partial ^2 \bar{\psi }({\varvec{\tau }})}{\partial {\varvec{\tau }}\partial {\varvec{\tau }}} : {\varvec{\sigma }} = m (m-1) \lambda ^{m-2} \bar{\psi }({\varvec{\sigma }}) \) holds for any \( \lambda \). In particular, it holds for \( \lambda =1 \) and hence (8) can be concluded.

  8. 8.

    This prevents a violation of the Second Law of thermodynamics.

  9. 9.

    For Roscoe invariants p, q we have the obliquity \(\eta = q/p \in (- \frac{3}{2} , 3)\) and \(H = 27 (\eta + 3) /[ ( 3 - \eta ) (2 \eta + 3)] - 9\). The value \(H = \infty \) corresponds to \(\eta = -3/2\) or \(\eta = 3\) or the mobilized friction angle is \( \arcsin ( 3\eta / (6 + \eta ) ) = \pm 90^\circ \).

  10. 10.

    The parameters \(n_Y\) and \(B_Y\) are independent of the void ratio, for simplicity.

  11. 11.

    For the old hypoplastic model [23, 24].

References

  1. Bauer, E.: Zum mechanischen Verhalten granularer Stoffe unter vorwiegend ödometrischer Beanspruchung. PhD thesis, Institut für Boden und Felsmechanik der Universität Karlsruhe (TH), Heft, Nr. 130 (1992)

    Google Scholar 

  2. Bažant, Z.P.: Endochronic inelasticity and incremental plasticity. Int. J. Solids Struct. 14, 691–714 (1978)

    Article  MATH  Google Scholar 

  3. Dafalias, F., Manzari, M.T.: Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. 130, 22–34 (2004)

    Google Scholar 

  4. Dafalias, Y.F.: Overview of constitutive models used in VELACS. In: Arulandan, K., Scott, R. (eds.) Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Proceedings of the International Conference in Davis, vol. 2, pp. 1293–1304. Balkema, California (1994)

    Google Scholar 

  5. Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3), 529–546 (1996)

    Article  Google Scholar 

  6. Espino, E.: Quasi-statische Untersuchungen zur Elastizität von Sand als Grundlage eines neuen hypoplastischen Stoffmodells. Master’s thesis, Institut für Boden- und Felsmechanik, Karlsruher Institut für Technologie, Mai (2014)

    Google Scholar 

  7. Gajo, A., Wood, D.M.: Severn trent sand: a kinematic hardening constitutive model: q-p formulation. Géotechnique 49(5), 595–614 (1999)

    Article  Google Scholar 

  8. Goto, S., Tatsuoka, F., Shibuya, S., Kim, Y.-S., Sato, T.: A simple gauge for local small strain measurements in the laboratory. Soils Found. 31(1), 169–180 (1991)

    Article  Google Scholar 

  9. Graham, J., Houlsby, G.T.: Anisotropic elsticity of a natural clay. Géotechnique 33(2), 165–180 (1983)

    Article  Google Scholar 

  10. Gudehus, G.: A comparison of some constitutive laws for soils under radially symmetric loading and unloading. In: Proceedings of the 3rd International Conference On Numerical Methods in Geomechanics, Balkema, Aachen (1979)

    Google Scholar 

  11. Herle, I.: Hypoplastizität und Granulometrie einfacher Korngerüste. PhD thesis, Institut für Boden- und Felsmechanik der Universität Karlsruhe, Nr. 142 (1997)

    Google Scholar 

  12. Hoque, E., Sato, T., Tatsuoka, F.: Performance evaluation of LDTs for use in triaxial tests. Geotech. Test. J. 20(2), 149–167 (1997)

    Article  Google Scholar 

  13. Knittel, L.J.: Fortgesetzte quasi-statische Untersuchungen zur Elastizität von Sand als Grundlage eines neuen hypoplastischen Stoffmodells. Master’s thesis, Institut für Boden- und Felsmechanik, Karlsruher Institut für Technologie (2014)

    Google Scholar 

  14. Loges, I., Niemunis, A.: Neohypoplasticity—estimation of small strain stiffness. In: Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes. Numerical and Physical Modelling. Springer (2014)

    Google Scholar 

  15. Matsuoka, H., Nakai, T.: Stress-strain relationship of soil base on the SMP, constitutive equations of soils. In: Murayama, S., Schofield, A.N. (eds.) Proceedings of the 9th International Conference On Soil Mechanics and Foundation Engineering, Speciality Session 9. Japanese Society of Soil Mechanics and Foundation Engineering, IX ICSMFE, Tokyo (1997)

    Google Scholar 

  16. Niemunis, A.: Extended hypoplastic models for soils. Politechnika Gdańska, Habilitation, Monografia 34 (2003)

    Google Scholar 

  17. Niemunis, A., Prada-Sarmiento, L.F., Grandas-Tavera, C.E.: Paraelasticity. Acta Geotech. 6(2), 67–80 (2011)

    Article  Google Scholar 

  18. Niemunis, A., Wichtmann, T., Triantafyllidis, T.: A high-cycle accumulation model for sand. Comput. Geotech. 32(4), 245–263 (2005)

    Article  MATH  Google Scholar 

  19. Richart, F.E.Jr. , Hall, J.R.Jr., Woods, R.D.: Vibrations of Soils and Foundations. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  20. Sands, C.M., Chandler, H.W.: Simulations of cyclic shearing of sand at low effective stress. Géotechnique 61(11), 983–992 (2011)

    Article  Google Scholar 

  21. Taiebat, M., Dafalias, Y.: Sanisand: simple anisotropic sand plasticity model. Int. J. Numer. Anal. Meth. Geomech. 32(8), 915–948 (2008)

    Article  MATH  Google Scholar 

  22. Vermeer, P.: A five-constant model unifying well established concepts. In: Constituents Relay for Soils, Proceedings of the International Workshop in Grenoble, pp. 175–198. Balkema, Holland (1982)

    Google Scholar 

  23. von Wolffersdorff, P.-A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohes.-Frict. Mat. 1, 251–271 (1996)

    Article  Google Scholar 

  24. von Wolffersdorf, P.-A.: Verformungsprognosen für Stützkonstruktionen. PhD thesis, Institut für Boden- und Felsmechanik der Universität Karlsruhe, Habilitationschrift, Heft Nr. 141 (1997)

    Google Scholar 

  25. Wichtmann, T., Triantafyllidis, T.: Influence of the grain size distribution curve of quartz sand on the small strain shear modulus \(G_{\max }\). J. Geotech. Geoenviron. Eng. 135(10), 1404–1418 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the DFG (DFG-Forschergruppe FOR 1136) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Niemunis .

Editor information

Editors and Affiliations

Appendix 1: Invertibility Condition for Neohypoplasticity

Appendix 1: Invertibility Condition for Neohypoplasticity

If \(\mathbf{z}: {\varvec{\dot{\epsilon }}} > 0\), then the invertibility condition is \(Y < 1\), identically as in the older versions of hypoplasticity, cf. [16]. In the following we examine the case \( \mathbf{z}:{\varvec{\dot{\epsilon }}} <0\) only. First, we find two scalar variables \( x = \Vert {\varvec{\dot{\epsilon }}}\Vert \) and \( y= \mathbf{z}':{\varvec{\dot{\epsilon }}} \), where \(\mathbf{z}' = \omega \mathbf{z}\). Let us denote \({\varvec{\dot{\epsilon }}}^\mathrm{el}= \mathsf{E}^{-1} : {\varvec{\dot{\sigma }}}\) which is a known tensor. The first scalar equation is obtained multiplying the constitutive equation

$$\begin{aligned} {\varvec{\dot{\sigma }}}= & {} \bar{\mathsf{E}}\left( {\varvec{\dot{\epsilon }}} - \mathbf m Y \Vert {\varvec{\dot{\epsilon }}} \Vert + {\vec {~{\mathbf{{1}}}}} \mathbf{z}': {\varvec{\dot{\epsilon }}} \right) \end{aligned}$$
(52)

by \(\mathbf{z}':( )\)

$$\begin{aligned} \mathbf{z}:{\varvec{\dot{\epsilon }}}^\mathrm{el}= & {} y - \mathbf{z}':\mathbf m Y x \quad \text {because}\quad \mathbf{z}' \perp ~{\vec {\mathbf{{1}}}}\end{aligned}$$
(53)
$$\begin{aligned} y= & {} \mathbf{z}':{\varvec{\dot{\epsilon }}}^\mathrm{el}+ \mathbf{z}':\mathbf m Y x \end{aligned}$$
(54)

The second scalar equation is obtained resolving the constitutive equation with substituted x, y for \({\varvec{\dot{\epsilon }}}\) and finding \(x^2 ={\varvec{\dot{\epsilon }}} :{\varvec{\dot{\epsilon }}} \)

$$\begin{aligned} {\varvec{\dot{\epsilon }}}= & {} \mathsf{C}: {\varvec{\dot{\sigma }}} + \mathbf m Y x - {\vec {~{\mathbf{{1}}}}} y \end{aligned}$$
(55)
$$\begin{aligned} x^2= & {} ({\varvec{\dot{\epsilon }}}^\mathrm{el}+ \mathbf m Y x - {\vec {~{\mathbf{{1}}}}} y) : ({\varvec{\dot{\epsilon }}}^\mathrm{el}+ \mathbf m Y x - {\vec {~{\mathbf{{1}}}}} y) \end{aligned}$$
(56)
$$\begin{aligned} 0= & {} {\varvec{\dot{\epsilon }}}^\mathrm{el}:{\varvec{\dot{\epsilon }}}^\mathrm{el}- 2 {\varvec{\dot{\epsilon }}}^\mathrm{el}: ~{\vec {\mathbf{{1}}}}y + y^2 + 2 {\varvec{\dot{\epsilon }}}^\mathrm{el}:\mathbf m Y x - 2 ~{\vec {\mathbf{{1}}}}: \mathbf m Y x y + (Y^2-1) x^2 ,\qquad \qquad \end{aligned}$$
(57)

where \(\mathbf m :\mathbf m = ~{\vec {\mathbf{{1}}}}:~{\vec {\mathbf{{1}}}}= 1\) has been used. We take y from (54) and substitute it into (57). The result is a quadratic equation \(A x^2 + B x + C = 0\) to be solved for x. For uniqueness of the inverse solution this quadratic equation should have two roots, one positive and one negative, i.e. \(x_1 x_2 < 0 \) and we take the positive one because \(x = \Vert {\varvec{\dot{\epsilon }}}\Vert \). The condition \(x_1 x_2 < 0 \) corresponds to \( C/A < 0\). Using abbreviated forms of (54) and (57), viz.

$$\begin{aligned} {\left\{ \begin{array}{ll}y = \alpha + \beta x \\ 0 = a x^2 + b xy + c x + d y^2 +e y + f, \end{array}\right. }\end{aligned}$$
(58)

we obtain the quadratic equation \(A x^2 + B x + C = 0\) with

$$\begin{aligned} {\left\{ \begin{array}{ll}A = a + b \beta + d \beta ^2 \\ C = f + e\alpha + d \alpha ^2 \end{array}\right. }\end{aligned}$$
(59)

or

$$\begin{aligned} {\left\{ \begin{array}{ll}A = (Y^2-1) - 2( ~{\vec {\mathbf{{1}}}}: \mathbf m ) ( \mathbf{z}':\mathbf m ) Y^2 + ( \mathbf{z}':\mathbf m )^2 Y^2 \\ C = {\varvec{\dot{\epsilon }}}^\mathrm{el}:{\varvec{\dot{\epsilon }}}^\mathrm{el}- 2 ({\varvec{\dot{\epsilon }}}^\mathrm{el}: ~{\vec {\mathbf{{1}}}}) (\mathbf{z}:{\varvec{\dot{\epsilon }}}^\mathrm{el}) + (\mathbf{z}:{\varvec{\dot{\epsilon }}}^\mathrm{el})^2 \end{array}\right. }\end{aligned}$$
(60)

The value C must be positive by the following argument: let us replace \({\varvec{\dot{\epsilon }}}^\mathrm{el}:{\varvec{\dot{\epsilon }}}^\mathrm{el}\) by \( ({\varvec{\dot{\epsilon }}}^\mathrm{el}: ~{\vec {\mathbf{{1}}}}) ({\varvec{\dot{\epsilon }}}^\mathrm{el}: ~{\vec {\mathbf{{1}}}}) \), which cannot increase C and hence

$$\begin{aligned} C \ge ( {\varvec{\dot{\epsilon }}}^\mathrm{el}:~{\vec {\mathbf{{1}}}}- \mathbf{z}':{\varvec{\dot{\epsilon }}}^\mathrm{el}):( {\varvec{\dot{\epsilon }}}^\mathrm{el}:~{\vec {\mathbf{{1}}}}- \mathbf{z}':{\varvec{\dot{\epsilon }}}^\mathrm{el}) >0 \end{aligned}$$
(61)

for any \( {\varvec{\dot{\epsilon }}}^\mathrm{el}\ne 0\). The condition of invertibility can be therefore reduced to \(A < 0\) or

$$\begin{aligned} \left[ 1 - (2 ~{\vec {\mathbf{{1}}}}: \mathbf m ) ( \mathbf{z}':\mathbf m ) + ( \mathbf{z}':\mathbf m )^2 \right] Y^2 < 1 \end{aligned}$$
(62)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Niemunis, A., Tavera, C.E.G., Wichtmann, T. (2016). Peak Stress Obliquity in Drained and Undrained Sands. Simulations with Neohypoplasticity. In: Triantafyllidis, T. (eds) Holistic Simulation of Geotechnical Installation Processes. Lecture Notes in Applied and Computational Mechanics, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-23159-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23159-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23158-7

  • Online ISBN: 978-3-319-23159-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics