Skip to main content

Impact of selenium, iron, copper and zinc in on/off Parkinson’s patients on L-dopa therapy

  • Chapter
Oxidative Stress and Neuroprotection

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 71))

Summary

We have quantitated CSF and serum levels of Selenium, iron, copper and zinc by Atomic absorption spectrophotometer in 36 patients with parkinson’s disease all on L-dopa therapy. Out of these 19 showed on or positive response to L-dopa where as 21 patients showed on and off response. These data were compared with 21 healthy controls. The results showed that serum levels of iron, copper and zinc remained unchanged where as in CSF, significant decrease in zinc was found in both on and on/off PD patients indicating the deficiency of zinc which continues in the worsening clinical condition of off patients. The level of copper remained unchanged in both on and on/off PD patients. Iron and selenium increase in CSF of both patients which is a clear evidence of relationship between increased iron and selenium level in brain which could be correlated with decrease in dopamine levels and oxidative stress in PD Patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen JK (2004) Iron dysregulation and Parkinson’s disease. J Alzheimers Dis 6[Suppl 6]: S47–S52

    PubMed  CAS  Google Scholar 

  • Benton D (2002) Selenium intake, mood and other aspects of psychological functioning. Nutr Neurosci 6: 363–374

    Article  CAS  Google Scholar 

  • Bergomi M, Vinceti M, Nacci G, Pietrini V, Bratter P, Alber D, Ferrari A, Vescovi L, Guidetti D, Sola P, Malagu S, Aramini C, Vivoli G (2002) Environmental exposure to trace elements and risk of amyotrophic lateral sclerosis: a population-based case-control study. Environ Res 89: 116–123

    Article  PubMed  CAS  Google Scholar 

  • Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64: 1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Brigelius-Flohe R, Kluth D, Banning A (2005) Is there a future for antioxidants in atherogenesis? Mol Nutr Food Res 49: 1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Cotter MA, Love A, Watt MJ, Cameron NE, Dines KC (1995) Effects of natural free radical scavengers on peripheral nerve and neurovascular function in diabetic rats. Diabetologia 38: 1285–1294

    PubMed  CAS  Google Scholar 

  • Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 91: 9–18

    Article  PubMed  CAS  Google Scholar 

  • Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4: 137–169

    Article  PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM (1996) Nitric oxide neurotoxicity. J Chem Neuroanat 10: 179–190

    Article  PubMed  CAS  Google Scholar 

  • Double KL, Gerlach M, Youdim MB, Riederer P (2000) Impaired iron homeostasis in Parkinson’s disease. J Neural Transm [Suppl 60]: 37–58

    Google Scholar 

  • Fahn S (1991) An open trial of high-dosage antioxidants in early Parkinson’s disease. Am J Clin Nutr 53[Suppl]: 380S–382S

    PubMed  CAS  Google Scholar 

  • Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson disease: evidence supporting it. Ann Neuro 32: 804–812

    Article  CAS  Google Scholar 

  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189: 147–163

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, Youdim MB (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63: 793–807

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59: 1609–1623

    Article  PubMed  CAS  Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17: 427–442

    Article  PubMed  CAS  Google Scholar 

  • Huges AJ, Ben-Shlomo SE, Daniel ST, Lees AJ (1992) What features improve the accuracy of clinical diagnosis in Parkinson’s disease? A clinopathalogical study. Neurology 42: 1142–1146

    Google Scholar 

  • Jellinger KA (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14: 115–140

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (2003) General aspects of neurodegeneration. J Neural Transm [Suppl 65]: 101–144

    Google Scholar 

  • Jimenez-Jimenez FJ, Molina JA, Aguilar MV, et al. (1998) Cerebrospinal fluid levels of transition metals in patients with Parkinson’s disease. J Neural Transm 105: 497–505

    Article  PubMed  CAS  Google Scholar 

  • Kienzl E, Punchingar L, Jellinger K, Linert W, Stachelberger H, Jameson RF (1995) The role of transition metals in the pathogenesis of Parkinson’s disease. J Neurol Sci 134: 69–78

    Article  PubMed  Google Scholar 

  • Lan J, Jiang DH (1997) Excessive iron accumulation in the brain: a possible potential risk of neurodegeneration in Parkinson’s disease. J Neural Transm 104: 649–660

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Shin SY, Choi C, Lee YH, Lee SJ (2002) Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 277: 5411–5417

    Article  PubMed  CAS  Google Scholar 

  • Levander OA (1988) Selenium, chromium and manganese. In: Shils ME, Young MR (eds) Modern Nutrition in health and Disease. Lea 7 Febiger, Philadelpia, pp 263–277

    Google Scholar 

  • Lin AM, Fan SF, Yang DM, Hsu LL, Yang CH (2003) Zinc-induced apoptosis in substantia nigra of rat brain: neuroprotection by vitamin D3. Free Radic Biol Med 34: 1416–1425

    Article  PubMed  CAS  Google Scholar 

  • Link H, Tibbling G (1977) Principles of Albumin and IgG analyses in neurological disorders III. Evaluation of IgG synthesis within the central nervous system in multiple sclerosis. Scand J Clin Lab Invest 37: 297–301

    Google Scholar 

  • Mitchell JJ, Paiva M, Heaton MB (1999) Vitamin E and beta-carotene protect against ethanol combined with ischemia in an embryonic rat hippocampal culture model of fetal alcohol syndrome. Neurosci Lett 263: 189–192

    Article  PubMed  CAS  Google Scholar 

  • Nishida Y (2003) Elucidation of endemic neurodegenerative diseases — a commentary. Z Naturforsch 58: 752–758

    CAS  Google Scholar 

  • Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S (2002) Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci 22: 6578–6586

    PubMed  CAS  Google Scholar 

  • Perry G, Sayre LM, Atwood CS, et al. (2002) The role of iron and copper in the aetiology of neurodegenerative disorders: therapeutic implications. CNS Drugs 16: 339–352

    Article  PubMed  CAS  Google Scholar 

  • Polla BS (1999) Therapy by taking away: the case of iron. Biochem Pharmacol 57: 1345–1349

    Article  PubMed  CAS  Google Scholar 

  • Ponka P (2004) Hereditary causes of disturbed iron homeostasis in the central nervous system. Ann NY Acad Sci 1012: 267–281

    Article  PubMed  CAS  Google Scholar 

  • Qian ZM, Shen X (2001) Brain iron transport and neurodegeneration. Trends Mol Med 7: 103–108

    Article  PubMed  CAS  Google Scholar 

  • Qureshi GA, Parvez SH (1998) The role of aspartic acid, glutamic acid and GABA in neurologic disorders. Biogenic Amines 13: 565–578

    Google Scholar 

  • Qureshi GA, Memon SA, Qureshi AA, Collin C, Parvez SH (2003) Neurotoxicity and dynamic Parkinson’s patients in on-off phenomena. Biogenic Amines 18: 55–78

    Article  CAS  Google Scholar 

  • Qureshi GA, Memon SA, Parvez SH (2004a) Role of cobalamin and its impact on free radical NO homocysteine in Parkinson’s on and off patients. Biogenic Amine 19: 26–44

    Google Scholar 

  • Qureshi GA, Collins C, Memon SA, Parvez H (2004b) Parkinson’s Disease and neurotransmitters interplay in on/off phenomena. Biogenic Amines 19: 44–62

    Google Scholar 

  • Siesjö R (1967) A new method for the cytological examination of cerebrospinal fluid. J Neurol Neurosurg Psych 30: 568–577

    Article  Google Scholar 

  • Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55: 175–185

    Article  PubMed  CAS  Google Scholar 

  • Tabner BJ, Turnbull S, El-Agnaf OM, Allsop D (2002) Formation of hydrogen peroxide and hydroxyl radicals from A(beta) and alphasynuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Radic Biol Med 32: 1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Tagami M, Yamagata K, Ikeda K, Nara Y, et al. (1998) Vitamin E prevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion. Lab Invest 78: 1415–1429

    PubMed  CAS  Google Scholar 

  • Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55: 155–164

    Article  PubMed  CAS  Google Scholar 

  • Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF (2002) Heme and iron metabolism: role in cerebral memorrhage. J Cereb Blood 91: 9–18

    Google Scholar 

  • White AR, Cappai R (2003) Neurotoxicity from glutathione depletion is dependent on extracellular trace copper. J Neurosci Res 71: 889–897

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Bruce-Keller AJ, Goodman Y, Mattson MP (1998) Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res 53: 613–625

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Qureshi, G.A., Qureshi, A.A., Memon, S.A., Parvez, S.H. (2006). Impact of selenium, iron, copper and zinc in on/off Parkinson’s patients on L-dopa therapy. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33328-0_24

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33327-3

  • Online ISBN: 978-3-211-33328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics