Skip to main content

Photoinduced Electron Transport in DNA

Toward Electronic Devices Based on DNA Architecture

  • Chapter
NanoBioTechnology

Abstract

This chapter briefly summarizes important and basic aspects related to electron transport processes in DNA over long distances. Despite this broad knowledge, DNA research is still far from a profound and clear understanding of the electronic properties and electronic interactions in DNA that are crucial for any nanobiotechnological application. In the past, DNA-mediated charge transport has been a subject of considerable interest with biological relevance in the formation and repair of lesions and damage in DNA. The most recent developments underscore the significance of DNA or DNA-like architectures for the development of electronic devices on the nanoscale. It is clear that there is a great potential for applications of DNA-mediated charge transport processes in new DNA assays and microarrays for biotechnology, as well as DNA-inspired devices for nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eley DD, Spivey DI. Semiconductivity of organic substances. 9. Nucleic acid dry state. Trans Faraday Soc 1962;58:411–415.

    Article  CAS  Google Scholar 

  2. Priyadarshy S, Risser SM, Beratan DN. DNA is not a molecular wire: proteinlike electron-transfer predicted for an extended π-electron system. J Phys Chem 1996; 100:17,678–17,682.

    Article  CAS  Google Scholar 

  3. Turro NJ, Barton JK. Paradigms, supermolecules, electron transfer and chemistry at a distance. What’s the problem? The science or the paradigm? J Biol Inorg Chem 1998;3:201–109.

    Article  CAS  Google Scholar 

  4. Berlin YA, Burin AL, Ratner MA. DNA as a molecular wire. Superlattices Microstruct 2000;28:241–252.

    Article  CAS  Google Scholar 

  5. Schuster GB, ed. (2004) Long-range charge transfer in DNA II. In: Topics in Current Chemistry, Volume 237. Berlin: Springer.

    Google Scholar 

  6. Schuster GB, ed. (2004) Long-range charge transfer in DNA I. In: Topics in Current Chemistry, Volume 236. Berlin: Springer.

    Google Scholar 

  7. Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME. Charge transfer and transport in DNA. Proc Natl Acad Sci USA 1998;95:12,759–12,765.

    Article  CAS  Google Scholar 

  8. O’Neill P, Frieden EM. Primary free radical processes in DNA. Adv Radiat Biol 1993; 17:53–120.

    Google Scholar 

  9. Burrows CJ, Muller JG. Oxidative nucleobase modifications leading to strand scission. ChemRev 1998;98:1109–1151.

    CAS  Google Scholar 

  10. Wang D, Kreutzer DA, Essigmann JM, Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutation Res 1998;400:99–115.

    CAS  Google Scholar 

  11. Kawanashi S, Hiraku Y, Oikawa S. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutation Res 2001;488:65–76.

    Article  Google Scholar 

  12. Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat Biotechnol 2003; 21:1192–1199.

    Article  CAS  Google Scholar 

  13. Porath D, Cuniberti G, Di Felice R. Charge transport in DNA-based devices. Top Curr Chem 2004;237:183–227.

    CAS  Google Scholar 

  14. Wagenknecht H-A. Synthetic oligonucleotide modifications for the investigation of charge transfer and migration processes in DNA. Curr Org Chem 2004;8:251–266.

    Article  CAS  Google Scholar 

  15. Grinstaff MW. How do charges travel through DNA?—an update on a current debate. Angew Chem Int Ed 1999;38:3629–3635.

    Article  CAS  Google Scholar 

  16. Giese B. Long-distance electron transfer through DNA. Annu Rev Biochem 2002;71:51–70.

    Article  CAS  Google Scholar 

  17. Wagenknecht H-A. Reductive electron transfer and transport of excess electrons in DNA. Angew Chem In. Ed 2003;42:2454–2460.

    Article  CAS  Google Scholar 

  18. Steenken S, Jovanovic SV. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. JAmChemSoc 1997;119:617–618.

    CAS  Google Scholar 

  19. Seidel CAM, Schulz A, Sauer MHM. Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J Phys Chem 1996; 100:5541–5553.

    Article  CAS  Google Scholar 

  20. Lewis FD, Liu X, Liu J, Miller SE, Hayes RT, Wasielewski MR. Direct measurement of hole transport dynamics in DNA. Nature 2000;406:51–53.

    Article  CAS  Google Scholar 

  21. Wagenknecht H-A, Rajski SR, Pascaly M, Stemp EDA, Barton JK. Direct observation of radical intermediates in protein-dependent DNA charge transport. J Am Chem Soc 2001;123:4400–4407.

    Article  CAS  Google Scholar 

  22. Giese B, Spichty M. Long distance charge transport through DNA: quantification and extension of the hopping model. ChemPhysChem 2000;1:195–198.

    Article  CAS  Google Scholar 

  23. Giese B, Amaudrut J, Köhler A-K, Spormann M, Wessely S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 2001;412:318–320.

    Article  CAS  Google Scholar 

  24. Takada T, Kawai K, Cai X, Sugimoto A, Fujitsuka M, Majima T. Charge separation in DNA via consecutive adenine hopping. J Am Chem Soc 2004; 126:1125–1129.

    Article  CAS  Google Scholar 

  25. Giese B, Kendrick T. Charge transfer through DNA triggered by site selective charge injection into adenine. Chem Commun 2002;2016-2017.

    Google Scholar 

  26. Li X, Cai Z, Sevilla MD. Energetics of the radical ions of the AT and AU base pairs: A density functional theory (DFT) study. J Phys Chem A 2002; 106: 9345–9351.

    Article  CAS  Google Scholar 

  27. Steenken S. Electron transfer in DNA? Competition by ultra-fast protontransfer? Biol Chem 1997;378:1293–1297.

    CAS  Google Scholar 

  28. Steenken S. Electron-transfer-induced acidity/basicity and reactivity changes of purine and pyrimidine bases. Consequences of redox processes for DNA base pairs. Free Rad Res Comm. 1992;16:349–379.

    Article  CAS  Google Scholar 

  29. Giese B, Wessely S. The significance of proton migration during hole hopping through DNA. Chem Commun 2001;2001:2108-2109.

    Google Scholar 

  30. Giese B, Carl B, Carl T, et al. Excess electron transport through DNA: a single electron repairs more than one UV-induced lesion. Angew Chem Int Ed 2004;43:1848–1851.

    Article  CAS  Google Scholar 

  31. Voityuk AA, Michel-Beyerle M-E, Rösch N. Energetics of excess electron transfer in DNA. Chem Phys Lett 2001;342:231–238.

    Article  CAS  Google Scholar 

  32. Steenken S, Telo JP, Novais HM, Candeias LP. One-electron-reduction potentials of pyrimidine bases, nucleosides, and nucleotides in aqueous solution. Consequences for DNA redox chemistry. J Am Chem Soc 1992;114:4701–4709.

    Article  CAS  Google Scholar 

  33. Cai Z, Sevilla MD. Studies of excess electron and hole transfer in DNA at low temperatures. Top Curr Chem 2004;237:103–128.

    CAS  Google Scholar 

  34. Behrens C, Burgdorf LT, Schwögler A, Carell T. Weak distance dependence of excess electron transfer in DNA. Angew Chem Int Ed 2002;41:1763–1766.

    Article  CAS  Google Scholar 

  35. Haas C, KrÄling K, Cichon M, Rahe N, Carell T. Excess electron transfer driven DNA does not depend on the transfer direction. Angew Chem Int Ed 2004;43:1842–1844.

    Article  CAS  Google Scholar 

  36. Ito T, Rokita SE. Excess electron transfer from an internally conjugated aromatic amine to 5-bromo-2′-deoxyuridine in DNA. J Am Chem Soc 2003; 125: 11,480–11,481.

    Article  CAS  Google Scholar 

  37. Ito T, Rokita SE. Criteria for efficient transport of excess electrons in DNA. Angew Chem Int Ed 2004;43:1839–1842.

    Article  CAS  Google Scholar 

  38. Ito T, Rokita SE. Reductive electron injection into duplex DNA by aromatic amines. J Am Chem Soc 2004;126:15,552–15,559.

    Article  CAS  Google Scholar 

  39. Lewis FD, Liu X, Miller SE, Hayes RT, Wasielewski MR. Dynamics of electron injection in DNA hairpins. J Am Chem Soc 2002;124:11,280–11,281.

    Article  CAS  Google Scholar 

  40. Wagner C, Wagenknecht HA. Reductive electron transfer in phenothiazine-modified DNA is dependent on the base sequence. Chem Eur J 2005;11:1871–1876.

    Article  CAS  Google Scholar 

  41. Amann N, Pandurski E, Fiebig T, Wagenknecht H-A. Electron injection into DNA: synthesis and spectroscopic properties of pyrenyl-modified oligonucleotides. Chem Eur J 2002;8:4877–4883.

    Article  CAS  Google Scholar 

  42. Kaden P, Mayer-Enthart E, Trifonov A, Fiebig T, Wagenknecht H-A. Realtime spectroscopic and chemical probing of reductive electron transfer in DNA. Angew Chem Int Ed 5;44:1636–1639.

    Google Scholar 

  43. Sancar A. Structure and function of DNA photolyase and cryptopchrome bluelight photoreceptors. Chem Rev 2003;103:2203–2237.

    Article  CAS  Google Scholar 

  44. Scannell MP, Fenick DJ, Yeh S-R, Falvey DE. Model studies of DNA photoreapair: reduction potentials of thymine and cytosine cyclobutane dimers measured by fluorescence quenching. J Am Chem Soc 1997;119:1971–1977.

    Article  CAS  Google Scholar 

  45. Chen T, Cook GP, Koppisch AT, Greenberg MM. Investigation of the origin of the sequence selectivity for the 5-halo-2′-deoxyuridine sensitization of DNA to damage by UV-irradiation. J Am Chem Soc 2000; 122:3861–3866.

    Article  CAS  Google Scholar 

  46. Rivera E, Schuler RH. Intermediates in the reduction of 5-halouracils by eaq -1. J Am Chem Soc 1983;87:3966–3971.

    CAS  Google Scholar 

  47. Kadysh VP, Kaminskii YL, Rumyantseva LN, Efimova VL, Strandish JP. Khim Geterotsikl Soedin 1992;10:1404–1408.

    Google Scholar 

  48. Yeh S-R, Falvey DE. Model studies of DNA photorepair: radical anion cleavage of thymine dimers probed by nanosecond laser spectroscopy. J Am Chem Soc 1997;113:8557–8558.

    Article  Google Scholar 

  49. Huber R, Fiebig T, Wagenknecht H-A. Pyrene as a fluorescent probe for DNA base radicals. Chem Commun 2003;1878-1879.

    Google Scholar 

  50. Raytchev M, Mayer E, Amann N, Wagenknecht H-A, Fiebig T. Ultrafast proton-coupled electron-transfer dynamics in pyrene-modified pyrimidine nucleosides: model studies towards an understanding of reductive electron transport in DNA. ChemPhysChem 2004;5:706–712.

    Article  CAS  Google Scholar 

  51. Netzel TL, Zhao M, Nafisi K, Headrick J, Sigman MS, Eaton BE. Photophysics of 2′-deoxyuridine (dU) nucleosides covalently substituted with either 1-pyrenyl or 1-pyrenoyl: observation of pyrene-to-nucleoside chargetransfer emission in 5-(1-pyrenyl)-dU. J Am Chem Soc 1995; 117:9119–9128.

    Article  CAS  Google Scholar 

  52. Niemeyer CM, Blohm D. DNA microarray. Angew Chem Int Ed 1999;38: 2865–2869.

    Article  CAS  Google Scholar 

  53. Blohm DH, Guiseppi-Elie A. New developments in microarray technology. Curr Opin Biotechnol 2001;12:41–47.

    Article  CAS  Google Scholar 

  54. Pirrung MC. How to make a DNA chip. Angew Chem Int Ed 2002;41: 1276–1289.

    Article  CAS  Google Scholar 

  55. Jung A. DNA chip technology. Anal Bioanal Chem 2002;372:41–42.

    Article  CAS  Google Scholar 

  56. Strerath M, Marx A. Genotyping—from genomic DNA to genotype in a single tube. Angew Chem Int Ed Engl 2005;44:7842–7849.

    Article  CAS  Google Scholar 

  57. Nakatani K. Chemistry challenges in SNP typing. ChemBioChem 2004;5: 1623–1633.

    Article  CAS  Google Scholar 

  58. Kumar A, Abott NL, Kim E, Biebuyck HA, Whitesides GM. Patterned self-assembled monolayers and meso-scale phenomen. Acc Chem Res 1995;28:219–226.

    Article  CAS  Google Scholar 

  59. Porier GE. Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy. Chem Rev 1997;97:1117–1127.

    Article  Google Scholar 

  60. Okamoto A, Tanaka K, Saito I. Rational design of a DNA wire possessing an extremely high hole transport ability. J Am Chem Soc 2003;125:5066–5071.

    Article  CAS  Google Scholar 

  61. Nakatani K, Dohno C, Saito I. N2-phenyldeoxyguanosine: modulation of the chemical properties of deoxyguanosine toward one-electron oxidation in DNA. J Am Chem Soc 2002;124:6802–6803.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wagenknecht, HA. (2008). Photoinduced Electron Transport in DNA. In: Shoseyov, O., Levy, I. (eds) NanoBioTechnology. Humana Press. https://doi.org/10.1007/978-1-59745-218-2_5

Download citation

Publish with us

Policies and ethics