Skip to main content

Ecological Aspects of Antarctic Microbiology

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 11))

Abstract

If the science of microbiology is approaching maturity, then Antarctic microbiology is only just emerging from its infancy. The early expeditions of the 20th century used classical medical methodology to isolate and identify bacteria, yeasts, and fungi from sea water, soil, snow, air, and animals (Ekelöf, 1908; Tsiklinsky, 1908; Gazert, 1912; McLean, 1918, 1919). The initial emphasis was on survey and taxonomy, although Gazert (1912) noted the influence of marine bacteria on nutrient cycling during the German Antarctic Expedition of 1901–03. However, it is Ekelöf of the Swedish National Antarctic Expedition 1901–03 who may be regarded as the father of Antarctic microbial ecology. Between February 1902 and November 1903, he made a seasonal study of the soil and air microbiota at Snow Hill Island (64° 30′S) off the east coast of the Antarctic Peninsula (Fig. 1). Using rich medical media, he monitored viable bacteria, yeasts, and other microfungi but made no mention of the organisms resembling cyanobacteria and microalgae which are frequently the dominant primary producers in terrestrial Antarctic ecosystems (Ekelöf, 1908).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abyzov, S. S., Bobin, N. E., and Kudryashov, B. B., 1982, Quantitative analysis of microorganisms during the microbiological investigation of Antarctic glaciers, Biol. Bull. Acad. Sci. USSR 9: 558–564.

    Google Scholar 

  • Ackley, S. F., Buck, K. R., and Taguchi, S., 1979, Standing crop of algae in the sea ice of the Weddell Sea region, Deep Sea Res. 26A: 269–281.

    Google Scholar 

  • Adamson, D. A., and Pickard, J., 1986, Cainozoic history of the Vestfold Hills, in: Antarctic Oasis. Terrestrial Environments and History of the Vestfold Hills (J. Pickard, ed.), pp. 63–98, Academic Press, North Ryde, Australia.

    Google Scholar 

  • Aksenov, S. I., Babyeva, I. P., and Golubev, V. I., 1973, On the mechanism of adaptation of microorganisms to conditions of extreme low humidity, Life Sci. Space Res. 11: 55–61.

    PubMed  CAS  Google Scholar 

  • Allen, S. E., Grimshaw, M., Parkinson, J. A., and Quarmby, C., 1974, Chemical Analysis of Ecological Methods, Blackwell Scientific Publications, London.

    Google Scholar 

  • Allnutt, F. C. T., Parker, B. C., Seaburg, K. G., and Simmons, G. M. Jr., 1981, In situ nitrogen (C2H2) fixation in lakes of southern Victoria Land, Antarctica, Hydrol. Bull. 15: 99–109.

    CAS  Google Scholar 

  • Armitage, K. B., and House, H. B., 1962, A limnological reconnaissance in the area of McMurdo Sound, Antarctica, Limnol. Oceanogr. 7: 36–41.

    Google Scholar 

  • Atlas, R. M., Di Menna, M. E., and Cameron, R. E., 1978, Ecological investigations of yeasts in Antarctic soils, Antarct. Res. Ser. Wash. 30: 27–34.

    Google Scholar 

  • Baharaeen, S., Melcher, U., and Vishniac, H. S., 1983. Complementary DNA-25S ribosomal RNA hybridization: An improved method for phylogenetic studies, Can. J. Microbiol. 29: 546–551.

    PubMed  CAS  Google Scholar 

  • Baharaeen, S., and Vishniac, H. S., 1984, 25S ribosomal RNA homologies of basidiomycetous yeasts: taxonomic and phylogenetic implications, Can. J. Microbiol. 30: 613–621.

    PubMed  CAS  Google Scholar 

  • Bailey, A. D., and Wynn-Williams, D. D., 1982, Soil microbiological studies at Signy Island, South Orkney Islands, Br. Antarct. Surv. Bull. 51: 167–191.

    Google Scholar 

  • Baker, J. H., 1970a, Quantitative study of yeasts and bacteria in a Signy Island peat, Br. Antarct. Surv. Bull. 23: 51–55.

    Google Scholar 

  • Baker, J. H., 1970b, Yeasts, moulds and bacteria from an acid peat on Signy Island, in: Antarctic Ecology, Vol. 2 (R. M. Laws, ed.), pp. 717–722, Academic Press, London.

    Google Scholar 

  • Barghoorn, E. S., and Nichols, R. L., 1961, Sulfate-reducing bacteria and pyritic sediments in Antarctica, Science 134: 190.

    PubMed  CAS  Google Scholar 

  • Becker, E. W., 1982, Physiological studies on Antarctic Prasiola crispa and Nostoc commune at low temperatures, Polar Biol. 1: 99–104.

    CAS  Google Scholar 

  • Benoit, R. E., and Hall, C. L., 1970, The microbiology of some Dry Valley soils of Victoria Land, Antarctica, in: Antarctic Ecology (M. Holdgate, ed.), pp. 697–701, Academic Press, London.

    Google Scholar 

  • Berg, T. E., and Black, R. F., 1966, Preliminary measurements of growth of nonsorted polygons, Victoria Land, Antarctica, Antarct. Res. Ser. Wash. 8: 61–108.

    Google Scholar 

  • Bhakoo, M., and Herbert, R. A., 1980, Fatty acid and phospholipid composition of five psychotropic Pseudomonas spp. grown at different temperatures, Arch. Microbiol. 126: 51–56.

    PubMed  CAS  Google Scholar 

  • Bjørnsen, P. K., 1986, Automatic determination of bacterioplankton biomass by image analysis, Appl. Environ. Microbiol. 51: 1199–1204.

    PubMed  Google Scholar 

  • Block, W., 1980, Survival strategies in polar terrestrial arthropods, Biol. J. Linn. Soc. 14: 29–38.

    Google Scholar 

  • Block, W., 1984, Terrestrial microbiology, invertebrates and ecosystems, in: Antarctic Ecology, Vol. 1 (R. M. Laws, ed.), pp. 163–236, Academic Press, London.

    Google Scholar 

  • Block, W., and Sømme, L., 1982, Cold hardiness of terrestrial mites at Signy Island, maritime Antarctic, Oikos 38: 157–167.

    Google Scholar 

  • Boyd, W. L., 1962, Comparison of soil bacteria and their metabolic activities in Arctic and Antarctic regions, Polar Rec. 11: 319.

    Google Scholar 

  • Boyd, W. L., and Boyd, J. W., 1962, Presence of Azotobacter species in polar regions, J. Bacteriol. 83: 429–430.

    PubMed  CAS  Google Scholar 

  • Boyd, W. L., and Boyd, J. W., 1963, Viability of coliform bacteria in Antarctic soils, J. Bacteriol. 85: 1121–1123.

    PubMed  CAS  Google Scholar 

  • Boyd, W. L., Staley, J. T., and Boyd, J. W., 1966, Ecology of soil microorganisms of Antarctica, Antarct. Res. Ser. Wash. 8: 125–159.

    Google Scholar 

  • Broady, P. A., 1979a, Wind dispersal of terrestrial algae at Signy Island, South Orkney Islands, Br. Antarct. Surv. Bull. 48: 99–102.

    Google Scholar 

  • Broady, P. A., 1979b, The terrestrial algae of Signy Island, South Orkney Islands, Br. Antarct. Surv. Sci. Rep. 98: 1–117.

    Google Scholar 

  • Broady, P. A., 1981a, The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica, Br. Phycol. J. 16: 231–240.

    Google Scholar 

  • Broady, P. A., 1981b, The ecology of chasmolithic algae at coastal locations of Antarctica, Phycologia 20: 259–272.

    Google Scholar 

  • Broady, P. A., 1981c, Ecological and taxonomic observations on subaerial epilithic algae from Princess Elizabeth Land and MacRobertson Land, Antarctica, Br. Phycol. J. 16: 257–266.

    Google Scholar 

  • Broady, P. A., 1982, Ecology of non-marine algae at Mawson Rock, Antarctica, Nova Hedw. 36: 209–229.

    Google Scholar 

  • Broady, P. A., 1984, Taxonomic and ecological investigations of algae on steam-warmed soil on Mt. Erebus, Ross Island, Antarctica, Phycologia 23: 257–271.

    Google Scholar 

  • Broady, P. A., 1986a, A floristic survey of algae at four locations in northern Victoria Land, N.Z. Antarct. Rec. 7: 8–19.

    Google Scholar 

  • Broady, P. A., 1986b, Ecology and taxonomy of the terrestrial algae of the Vestfold Hills, in: The Vestfold Hills: An Antarctic Oasis (J. Pickard, ed.), pp. 165–202, Academic Press, Sydney.

    Google Scholar 

  • Broady, P. A., 1987, Protection of terrestrial plants and animals in the Ross Sea regions, N. Z. Antarct Rec. 8: 18–41.

    Google Scholar 

  • Broady, P. A., Garrick, R., and Anderson, G., 1984, Culture studies on the morphology of ten strains of Antarctic Oscillatoriaceae (Cyanobacteria), Polar Biol. 2: 233–244.

    Google Scholar 

  • Broady, P. A., Given, D., Greenfield, L. G., and Thompson, K., 1987, The biota and environment of fumaroles on Mount Melbourne, northern Victoria Land, Polar Biol. 7: 97–113.

    Google Scholar 

  • Brown, A. D., 1978, Compatible solutes and extreme water stress in eukaryotic micro-organisms, Adv. Microb. Physiol. 17: 181–242.

    PubMed  CAS  Google Scholar 

  • Bryant, H. M., 1945, Biology at East Base, Antarctic Peninsula, Antarctica, Proc. Am. Phil. Soc. 89: 256–269.

    Google Scholar 

  • Bunt, J. S., 1964, Primary productivity under sea-ice in Antarctic waters. 1. Concentrations and photosynthetic activities of microalgae in the waters of McMurdo Sound, Antarctica, Antarct. Res. Ser. Wash. 1: 13–26.

    Google Scholar 

  • Bunt, J. S., 1968, Some characteristics of microalgae isolated from Antarctic sea-ice, Antarct. Res. Ser. Wash. 11: 1–13.

    Google Scholar 

  • Bunt, J. S., and Lee, C. C., 1970, Seasonal primary production in Antarctic sea ice at McMurdo Sound in 1967, J. Mar. Res. 28: 304–320.

    Google Scholar 

  • Burch, M. D., and Marchant, H. J., 1983, Motility and microtubule stability of Antarctic algae at subzero temperatures, Protoplasma 115: 240–250.

    Google Scholar 

  • Burn, A. J., 1984, Energy partitioning in the Antarctic collembolan Cryptopygus antarcticus, Ecol. Entomol. 9: 11–21.

    Google Scholar 

  • Burton, H. R., 1981, Chemistry, physics and evolution of Antarctic saline lakes—a review, Hydrobiologia 83: 339–362.

    Google Scholar 

  • Burton, H. R., and Barker, R. J., 1979, Sulfur chemistry and microbiological fractionation of sulfur isotopes in a saline Antarctic lake, Geomicrobiol. J. 1: 329–340.

    CAS  Google Scholar 

  • Caldwell, J. R., 1981, Biomass and respiration of nematode populations in two moss communities at Signy Island, Oikos 37: 160–166.

    Google Scholar 

  • Cameron, R. E., 1969, Cold desert characteristics and problems relevant to other arid lands, in: Arid Lands in Perspective (W. G. McGinnies and B. J. Goldman, eds.), pp. 167–205, American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Cameron, R. E., 1971, Antarctic soil microbial investigations, in: Research in the Antarctic (L. O. Quam and H. D. Porter, eds.), pp. 137–189, American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Cameron, R. E., 1972a, Pollution and conservation of the Antarctic terrestrial ecosystem, in: Proceedings, Colloquium on Conservation Problems in Antarctica (B. C. Parker, ed.), pp. 267–308, Allen Press, Lawrence, Kans.

    Google Scholar 

  • Cameron, R. E., 1972b, Microbial and ecological investigations in Victoria Dry Valley, Southern Victoria Land, Antarctica, Antarct. Res. Ser. Wash. 20: 195–260.

    Google Scholar 

  • Cameron, R. E., 1972c, Farthest South algae and associated bacteria, Phycologia 11: 133–139.

    Google Scholar 

  • Cameron, R. E., 1974, Application of low latitude microbial ecology to high latitude deserts, in: Polar Deserts and Modern Man (T. L. Smiley and J. H. Zumberge, eds.), pp. 71–90, University of Arizona Press, Tucson.

    Google Scholar 

  • Cameron, R. E., and Benoit, R. E., 1970, Microbial and ecological investigations of recent cinder cones, Deception Island—A preliminary report, Ecology 51: 802–809.

    Google Scholar 

  • Cameron, R. E., and Blank, G. B., 1967, Desert soil algae survival at extremely low temperatures. Cryogenic Technol. 3: 151–156.

    Google Scholar 

  • Cameron, R. E., and Conrow, H. P., 1969, Soil moisture, relative humidity, and microbial abundance in dry valleys of Southern Victoria Land, Antarct. J. U.S. 4: 23–28.

    Google Scholar 

  • Cameron, R. E., and Devaney, J. R., 1970, Antarctic soil algal crusts. A scanning electron and optical microscope study, Trans. Am. Microsc. Soc. 80: 264–273.

    Google Scholar 

  • Cameron, R. E., and Ford, A. B., 1974, Baseline analyses of soils from the Pensacola Mountains, Antarct. J. U.S. 9: 116–119.

    Google Scholar 

  • Cameron, R. E., and Morelli, F. A., 1974, Viable microorganisms from ancient Ross Island and Taylor Valley drill cores, Antarct. J. U.S. 9: 113–115.

    Google Scholar 

  • Cameron, R. E., David, C. N., and King, J., 1968, Soil toxicity in Antarctic dry valleys, Antarct. J. U.S. 3: 164–166.

    Google Scholar 

  • Cameron, R. E., Hanson, R. B., Lacy, G. L., and Morelli, F. A., 1970a, Soil microbial and ecological investigations in the Antarctic interior, Antarct. J. U.S. 5: 87–88.

    Google Scholar 

  • Cameron, R. E., King, J., and David, C. N., 1970b, Microbial ecology and micro-climatology of soil sites in Dry Valleys of southern Victoria Land, Antarctica, in: Antarctica Ecology, Vol. 1 (M. W. Holdgate, ed.), pp. 702–716, Academic Press, London.

    Google Scholar 

  • Cameron, R. E., King, J., and David, C. N., 1970c, Soil microbial ecology of Wheeler Valley, Antarctica, Soil Sci. 109: 110–120.

    Google Scholar 

  • Cameron, R. E., Morelli, F. A., and Randall, L. P., 1972, Aerial aquatic and soil microbiology of Don Juan Pond, Antarctica, Antarct. J. U.S. 7: 254–258.

    Google Scholar 

  • Cameron, R. E., Morelli, F. A., and Johnson, R. M., 1973, Aerobiological monitoring of dry valley drilling sites, Antarct. J. U.S. 8: 211–214.

    Google Scholar 

  • Cameron, R. E., Morelli, F. A., Donlan, R., Guilfoyle, J., Markley, B., and Smith, R., 1974, Dry Valley Drilling Project environmental monitoring, Antarct. J. U.S. 9: 141–144.

    Google Scholar 

  • Cameron, R. E., Honour, R. C., and Morelli, F. A., 1976, Antarctic microbiology—preparation for Mars life detection, quarantine, and back contamination, in: Extreme Environments; Mechanisms of Microbial Adaptation (M. R. Heinrich, ed.), pp. 57–82, Academic Press, New York.

    Google Scholar 

  • Cameron, R. E., Honour, R. C., and Morelli, F. A., 1977, Environmental impact studies of Antarctic sites, in: Adaptations within Antarctic Ecosystems, Proc. 3rd SCAR Symp. Antarct. Biol. (G. A. Llano, ed.), pp. 1157–1176, Gulf Publishing Co., Houston.

    Google Scholar 

  • Campbell, P. J., 1978, Primary productivity of a hypersaline Antarctic lake, Aust. J. Mar. Freshwater Res. 29: 717–724.

    CAS  Google Scholar 

  • Campbell, S. E., 1982, Precambrian endoliths discovered, Nature (London) 299: 429–431.

    Google Scholar 

  • Cannon, R. J. C., and Block, W., 1988, Cold tolerance of microarthropods, Biol. Rev. 63: 23–77.

    Google Scholar 

  • Castrelos, O. D., Ikonicoff, S. I., Del Prete, L., Milano, O. C., and Margni, R. A., 1977, Microbiologia de la Antartida, Inst. Antart. Argent. Publ. 209: 4–25.

    Google Scholar 

  • Cathey, D. D., Parker, B.C., Simmons, G. M. Jr., and Yongue, W. H., Jr., 1981, Artificial substrates in southern Victoria Land lakes of Antarctica, Hydrobiologia 85: 3–16.

    Google Scholar 

  • Chambers, M. J. G., 1967, Investigations of patterned ground at Signy Island, South Orkney Islands. III. Miniature patterns, frost heaving and general conclusions, Br. Antarct. Surv. Bull. 12: 1–22.

    Google Scholar 

  • Chinn, T. J. H., 1981, Hydrology and climate of the Ross Sea area, J. R. Soc. N.Z. 11: 373–386.

    Google Scholar 

  • Christie, P., 1987a, Nitrogen in two contrasting Antarctic bryophyte communities, J. Ecol. 75: 73–94.

    CAS  Google Scholar 

  • Christie, P., 1987b, C-to-N ratios in two contrasting Antarctic peat profiles, Soil Biol. Biochem. 19: 777–778.

    Google Scholar 

  • Clarke, D. B., and Ackley, S. F., 1984, Sea ice structure and biological activity in the Antarctic marginal ice zone, J. Geophys. Res. 89: 2087–2097.

    Google Scholar 

  • Cohen-Bazire, G., and Bryant, D. A., 1982, Phycobilisomes: Composition and structure, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 143–190, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Collins, N. J., Baker, J. H., and Tilbrook, P. J., 1975, Signy Island, maritime Antarctic, in: Structure and Function of Tundra Ecosystems (T. Rosswall and O. W. Heal, eds.), Ecol. Bull. (Stockholm) 20: 345–374.

    Google Scholar 

  • Colwell, R. R., MacDonell, M. T., Friedman, I., and Vestal, J. R., 1987, Identification of Antarctic endolithic microorganisms by 5S rRNA sequence analysis, Abstracts, Modern Approaches in the Biology of Terrestrial Microorganisms and Plants in the Antarctic, Institut für Polarokologie, Kiel, September 1987.

    Google Scholar 

  • Corte, A., and Daglio, C. A. N., 1963, Micromicetes aislados en el Antartico, Inst. Antart. Argent. Publ. 74: 1–27.

    Google Scholar 

  • Craig, K. R., Fortner, R. D., and Weand, B. L., 1974, Halite and hydrohalite from Lake Bonney, Taylor Valley, Antarctica, Geology 2: 389–390.

    Google Scholar 

  • Darling, C. A., and Siple, P. A., 1941, Bacteria of Antarctica, J. Bacteriol. 42: 83–98.

    PubMed  CAS  Google Scholar 

  • Davis, R. C., 1981, Structure and function of two Antarctic terrestrial moss communities, Ecol. Monogr. 5: 125–143.

    Google Scholar 

  • Davis, R. C., 1986, Environmental factors influencing decomposition rates in two Antarctic moss communities, Polar Biol. 5: 95–104.

    Google Scholar 

  • Dawson, M. P., Humphrey, B., and Marshall, K. C., 1981, Adhesion: A tactic in the survival strategy of a marine vibrio during starvation, Curr. Microbiol. 6: 195–198.

    Google Scholar 

  • Deacon, G. E. R., 1964, A discussion on the physical and biological changes across the Antarctic Convergence. Introduction, Proc. R. Soc. Ser. A 281: 1–6.

    Google Scholar 

  • di Menna, M. E., 1960, Yeasts from Antarctica, J. Gen. Microbiol. 23: 295–300.

    PubMed  CAS  Google Scholar 

  • Dort, W., 1981, The mummified seals of Southern Victoria Land, Antarctica, Antarct. Res. Ser. Wash. 30: 123–154.

    Google Scholar 

  • Downes, M. T., Howard-Williams, C., and Vincent, W. F., 1986, Sources of organic nitrogen, phosphorus and carbon in Antarctic streams, Hydrobiologia 134: 215–225.

    CAS  Google Scholar 

  • Drouet, F., 1961, A brief review of the freshwater algae of Antarctica, in: Science in Antarctica, Part 1, Report by the Committee on Polar Research, pp. 10–12, National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Drouet, F., 1962, The Oscillatoriaceae and their distribution in Antarctica, Polar Rec. 11: 320–321.

    Google Scholar 

  • Ekelöf, E., 1908, Bakteriologische Studien während der Schwedischen Südpolar-Expedition 1901–1903, in: Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 1901–1903 (O. Nordenskjøld, ed.), Lithogr. Inst. Generalstabs, Stockholm.

    Google Scholar 

  • Elliot, D. H., 1985, Physical geography—Geological evolution, in: Key Environments—Antarctica (W. N. Bonner and D. W. H. Walton, eds.), pp. 39–61, Pergamon Press, Oxford.

    Google Scholar 

  • Ellis-Evans, J. C., 1981a, Freshwater microbiology in the Antarctic—I. Microbial numbers and activity in oligotrophic Moss Lake, Br. Antarct. Surv. Bull. 54: 85–104.

    Google Scholar 

  • Ellis-Evans, J. C., 1981b, Freshwater microbiology in the Antarctic—II. Microbial numbers and activity in mesotrophic Heywood Lake, Br. Antarct. Surv. Bull. 54: 105–121.

    Google Scholar 

  • Ellis-Evans, J. C., 1982, Seasonal microbial activity in Antarctic freshwater lake sediments, Polar Biol. 1: 129–140.

    Google Scholar 

  • Ellis-Evans, J. C., 1984, Methane in maritime Antarctic freshwater lakes, Polar Biol. 3: 63–72.

    CAS  Google Scholar 

  • Ellis-Evans, J. C., 1985a, Interactions of bacterio-and phytoplankton in nutrient cycling with eutrophic Heywood Lake, Signy Island, in: Antarctic Nutrient Cycling and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 261–264, Springer-Verlag, Berlin.

    Google Scholar 

  • Ellis-Evans, J. C., 1985b, Decomposition processes in maritime Antarctic lakes, in: Antarctic Nutrient Cycling and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 253–260, Springer-Verlag, Berlin.

    Google Scholar 

  • Ellis-Evans, J. C., and Sanders, M. W., 1988, Observations on microbial activity in a seasonally anoxic, nutrient enriched maritime Antarctic lake, Polar Biol. 8: 311–318.

    Google Scholar 

  • Ellis-Evans, J. C., and Wynn-Williams, D.D., 1985, The interaction of soil and lake microflora at Signy Island, in: Antarctic Nutrient Cycling and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 662–668, Springer-Verlag, Berlin.

    Google Scholar 

  • Estep, K. W., Maclntyre, F., Hjörleifsson, E., and Sieburth, J. McN., 1986, Maclmage: A user-friendly image-analysis system for accurate mensuration of marine organisms, Mar. Ecol. Prog. Ser. 33: 243–253.

    Google Scholar 

  • Fletcher, L. D., Kerry, E. J., and Weste, G. M., 1985, Microfungi of Mac.Robertson and Enderby Lands, Antarctica, Polar Biol. 4: 81–88.

    Google Scholar 

  • Fletcher, M., and Marshall, K. C., 1982, Are solid surfaces of ecological significance to aquatic bacteria?, In: Advances in Microbial Ecology, Vol. 6 (K. C. Marshall, ed.), pp. 199–236, Plenum Press, New York.

    Google Scholar 

  • Flint, E. A., and Stout, J. D., 1960, Microbiology of some soils of Antarctica, Nature (London) 188: 767–768.

    CAS  Google Scholar 

  • Foster, T. D., 1984, The marine environment, in: Antarctic Ecology (R. M. Laws, ed.), pp. 345–372, Academic Press, London.

    Google Scholar 

  • Friedmann, E. I., 1971, Light and scanning electron microscopy of the endolithic desert habitat, Phycologia 10: 411–428.

    Google Scholar 

  • Friedmann, E. I., 1977, Microorganisms in Antarctic desert rocks from Dry Valleys and Dufek Massif, Antarct. J. U.S. 12: 26–29.

    Google Scholar 

  • Friedmann, E. I., 1978, Melting snow in the Dry Valleys is a source of water for endolithic microorganisms, Antarct. J. U.S. 13: 162–163.

    Google Scholar 

  • Friedmann, E. I., 1980, Endolithic microbial life in hot and cold deserts, Orig. Life 10: 233–245.

    Google Scholar 

  • Friedmann, E. I., 1982, Endolithic microorganisms in the Antarctic cold desert, Science 215: 1045–1053.

    PubMed  CAS  Google Scholar 

  • Friedmann, E. I., 1986, The Antarctic cold desert and the search for life on Mars, Adv. Space Res. 6: 12: 265–268.

    PubMed  CAS  Google Scholar 

  • Friedmann, E. I., and Kibler, A. P., 1980, Nitrogen economy of endolithic microbial communities in hot and cold deserts, Microb. Ecol. 6: 95–108.

    CAS  Google Scholar 

  • Friedmann, E. I., and McKay, C. P., 1985, Methods for the continuous monitoring of snow: Application to the cryptoendolithic microbial community of Antarctica, Antarct. J. U.S. 20: 179–181.

    Google Scholar 

  • Friedmann, E. I., and Ocampo, R., 1976, Endolithic blue-green algae in the Dry Valleys. Primary producers in the Antarctic desert ecosystem, Science 193: 1247–1249.

    PubMed  CAS  Google Scholar 

  • Friedmann, E. I., and Ocampo-Riedmann, R., 1984a, Endolithic microoorganisms in extreme dry environments: Analysis of a lithobiontic microbial habitat, in: Current Perspectives in Microbiology (M. J. Klug and C.A. Reddy, eds.), pp. 177–185, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Friedmann, E. I., and Ocampo-Friedmann, R., 1984b, The Antarctic cryptoendolithic ecosystem. Relevance to exobiology, Orig. Life 14: 771–776.

    PubMed  CAS  Google Scholar 

  • Friedmann, E. I., and Weed, R., 1987, Trace-fossil formation in modern microbial communities: Biogenous and abiotic weathering in the Antarctic cold desert, Science 236: 703–705.

    PubMed  CAS  Google Scholar 

  • Friedmann, E. I., La Rock, P., and Brunson, J. O., 1980, Adenosine triphosphate (ATP), chlorophyll, and organic nitrogen in endolithic microbial communities and adjacent soils in the Dry Valleys of S. Victoria Land, Antarct. J. U.S. 15: 164–166.

    Google Scholar 

  • Friedmann, E. I., Riedmann, R. O., and McKay, C. P., 1982, Adaptation of cryptoendolithic lichens in the Antarctic desert, Comm. Natl. Francais Res. Antarct. Rep. 51: 65–72.

    Google Scholar 

  • Friedmann, E. I., McKay, C. P., and Nienow, J. A., 1987, The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Continuous nanoclimate data, 1984 to 1986, Polar Biol. 7: 273–287.

    PubMed  CAS  Google Scholar 

  • Fritsch, F. E., 1912, Natural History, Vol. 6, “Freshwater Algae, National Antarctic Expedition 1901–1904, British Museum (Natural History), London.

    Google Scholar 

  • Fry, J. C., 1988, Determination of biomass, in: Methods in Aquatic Bacteriology (B. Austin, ed.), pp. 27–72, Wiley, London.

    Google Scholar 

  • Garrison, D. L., Buck, K. R., and Silver, M.W., 1982, Ice algal communities in the Weddell Sea, Antarct. J. U.S. 17: 157–159.

    Google Scholar 

  • Garrison, D. L., Buck, K. R., and Silver, M. W., 1983, Studies of ice-algal communities in the Weddell Sea, Antarct. J. U.S. 18: 179–181.

    Google Scholar 

  • Garrison, D. L., Sullivan, C. W., and Ackley, S. F., 1986, Sea ice microbial communities in Antarctica, BioScience 36: 243–250.

    Google Scholar 

  • Gazert, H., 1912, Untersuchungen über Meeresbakterien und ihren Einfluss auf den Stoffwechsel in Meere, in: Deutsche Südpolar Expedition, 1901–1903, G. Reimes, Berlin, Vol. 7, pp. 268–296.

    Google Scholar 

  • Gibson, E. K., Wentworth, S. J., and McKay, D. S., 1983, Chemical weathering and diagenesis of a cold desert soil from Wright Valley: An analog of Martian Weathering processes, J. Geophys. Res. 88 (Suppl.): A912–A928.

    CAS  Google Scholar 

  • Giggenbach, W. F., Kyle, P. R., and Lyon, G. G., 1973, Present volcanic activity on Mount Erebus, Ross Island, Antarctic, Geology 1: 135–136.

    Google Scholar 

  • Golubic, S., Friedmann, E. I., and Schneider, J., 1981, Lithobiontic ecological niche, with special reference to microorganisms, J. Sedim. Petrol. 51: 475–478.

    Google Scholar 

  • Gordon, A. L., 1981, Seasonality of Southern Ocean sea-ice, J. Geophys. Res. 86: 4193–4197.

    Google Scholar 

  • Gow, A. J., Weeks, W. F., Goroni, J. W., and Ackley, S. F., 1981, Physical and structural characteristics of sea-ice in McMurdo Sound, Antarct. J. U.S. 16: 94–95.

    Google Scholar 

  • Greenfield, L. G., 1989, Forms of nitrogen in Beacon sandstone rocks containing endolithic microbial communities in Southern Victoria Land, Antarctica, Polarforschung 58: 211–218.

    Google Scholar 

  • Gregory, P. H., 1966, Dispersal, in: The Fungi, an Advanced Treatise, Vol. II (G. C. Ainsworth and A. S. Sussman, eds.), pp. 709–732, Academic Press, New York.

    Google Scholar 

  • Hale, M., 1987, Epilithic lichens in the Beacon sandstone formation, Victoria Land, Antarctica, Lichenologist 19: 269–287.

    PubMed  CAS  Google Scholar 

  • Hall, K., 1986a, Rock moisture content in the field and the laboratory and its relationship to mechanical weathering studies, Earth Surface Processes Landforms 11: 131–142.

    Google Scholar 

  • Hall, K., 1986b, Ireeze-thaw simulations on quartz-micaschist and their implications for weathering studies on Signy Island, Antarctica, Br. Antarct. Surv. Bull. 73: 19–30.

    Google Scholar 

  • Hand, R. MI., 1980, Bacterial population of two saline Antarctic lakes, Proc. 4th Int. Symp. Environ. Biogeochem., pp. 123–129, Springer-Verlag, Berlin.

    Google Scholar 

  • Hand, R. M., and Burton, H. R., 1981, Microbial ecology of an Antarctic saline meromictic lake, Hydrobiologia 81/82: 363–374.

    Google Scholar 

  • Harder, R., and Persiel, I., 1962, The occurrence of lower soil Phycomycetes in the Antarctic, Arch. Mikrobiol. 41: 44–50.

    PubMed  CAS  Google Scholar 

  • Harris, H. J. H., and Cartwright, K., 1981, Hydrogeology of the Don Juan Basin, Wright Valley, Antarctica, Antarct Res. Ser. Wash. 33: 161–184.

    Google Scholar 

  • Hasle, G. R., 1956, Phytoplankton and hydrography of the Pacific part of the Atlantic Ocean, Nature (London) 177: 616–617.

    Google Scholar 

  • Hasle, G. R., 1969, An analysis of the phytoplankton of the Pacific Southern Ocean: Abundance, composition and distribution during the Brategg Expedition, 1947–48, Hvalradets Skr. 52: 1–168.

    Google Scholar 

  • Hawes, I., 1983, Turbulence and its consequences for phytoplankton development in ice covered Antarctic lakes, Br. Antarct. Surv. Bull. 60: 69–82.

    Google Scholar 

  • Hawes, I., 1985, Factors controlling phytoplankton population in maritime Antarctic lakes, in: Antarctic Nutrient Cycling and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 245–252, Springer-Verlag, Berlin.

    Google Scholar 

  • Heal, O. W., Bailey, A. D., and Latter, P. M., 1967, Bacteria, fungi and protozoa in Signy Island soils compared with those from a temperate moorland, Phil. Trans. R. Soc. Lond. B 252: 191–197.

    Google Scholar 

  • Heap, J. (ed.), 1987, Handbook of the Antarctic Treaty System, 5th ed., Scientific Committee on Antarctic Research, Cambridge.

    Google Scholar 

  • Herbert, R. A., 1986, The ecology and physiology of psychrophilic microorganisms, in: Microbes in Extreme Environments (R. A. Herbert and G. A. Codd, eds.), pp. 1–25, Academic Press, London.

    Google Scholar 

  • Heywood, R. B., 1977, Antarctic freshwater ecosystems: review and synthesis, in: Adaptations within Antarctic Ecosystems, Proc. 3rd SCAR Symp. Antarct. Biol. (G. A. Llano, ed.), pp. 801–828, Gulf Publishing Co., Houston.

    Google Scholar 

  • Heywood, R. B., 1984, Antarctic Inland waters, in: Antarctic Ecology (R. M. Laws, ed.), pp. 279–344, Academic Press, London.

    Google Scholar 

  • Heywood, R. B., 1987, Limnological studies in the Antarctica Peninsula region, in: Antarctic Aquatic Biology, BIOMASS Sci. Ser., Vol. 7 (S. Z. El-Sayed, ed.), pp. 157–173, SCAR, Cambridge.

    Google Scholar 

  • Heywood, R. B., and Whitaker, T. M., 1984, The Antarctic marine flora, in: Antarctic Ecology (R. M. Laws, ed.), pp. 373–420, Academic Press, London.

    Google Scholar 

  • Heywood, R. B., Dartnall, H. J. G., and Priddle, J., 1980, Characteristics and classification of the lakes of Signy Island, South Orkney Islands, Antarctica, Freshwater Biol. 10: 47–59.

    Google Scholar 

  • Hirsch, P., 1986, Microbial life at extremely low nutrient levels, Adv. Space Res. 6: 12: 287–298.

    PubMed  CAS  Google Scholar 

  • Hirsch, P., Gallikowski, C. A., and Friedmann, E. I., 1985, Microorganisms in soil samples from Linnaeus Terrace, southern Victoria Land: preliminary observations, Antarct. J. U.S. 20: 183–186.

    CAS  Google Scholar 

  • Holdgate, M. W., 1964, Terrestrial ecology in the maritime Antarctic, in: Biologie Antarctique (R. Carrick, M. Holdgate, and J. Prévost, eds.), pp. 181–194, Hermann, Paris.

    Google Scholar 

  • Holm-Hansen, O., 1963, Algae: Nitrogen fixation by Antarctic species, Science 139: 1059–1060.

    PubMed  CAS  Google Scholar 

  • Holm-Hansen, O., Azam, F., Carlucci, A. F., Hodson, R. E., and Karl, D. M., 1977, Microbial distribution and activity in and around McMurdo Sound, Antarct. J. U.S. 12: 29–32.

    Google Scholar 

  • Hooker, J. D., 1847, Flora Antarctica, part 55, Algae, in: The Botany of the Antarctic Voyage, Vol. II, pp. 454–519, Reeve Bros., London.

    Google Scholar 

  • Horner, R. A., 1985a, Ecology of sea ice microalgae, in: Sea Ice Biota (R. A. Horner, ed.), pp. 83–103, CRC Press, Boca Raton.

    Google Scholar 

  • Horner, R. A., 1985b, Taxonomy of sea ice microalgae, in: Sea Ice Biota (R. A. Horner, ed.), pp. 147–157, CRC Press, Boca Raton.

    Google Scholar 

  • Horner, R. A., Syvertsen, E. E., Thomas, D. P., and Lange, C., 1988, Proposed terminology and reporting units for sea ice algal assemblages, Polar Biol. 8: 249–253.

    Google Scholar 

  • Horowitz, N. H., 1979, Biological water requirements, in: Strategies of Microbial Life in Extreme Environments (M. Shilo ed.), pp. 15–27, Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Horowitz, N. H., Bauman, A. J., Cameron, R. E., Geiger, P. J., Hubbard, J. S., Shulman, G. P., Simmonds, P. G., and Westberg, K., 1969, Sterile soil from Antarctica: Organic analysis, Science 164: 1054–1056.

    PubMed  CAS  Google Scholar 

  • Horowitz, N. H., Cameron, R. E., and Hubbard, J. S., 1972, Microbiology of the Dry Valleys of Antarctica, Science 176: 242–245.

    PubMed  CAS  Google Scholar 

  • Hoshiai, T., 1977, Seasonal changes of ice communities in the sea: ice near Syowa Station, Antarctica, in: Polar Oceans (M. J. Dunbar, ed.), pp. 301–317, Arctic Institute of North America, Calgary, Alberta.

    Google Scholar 

  • Howard-Williams, C., and Vincent, W. F., 1985, Ecosystem properties of Antarctic streams, N. Z. Antarct. Rec. (Special Issue) 6: 21–31.

    Google Scholar 

  • Howard-Williams, C., Vincent, C. L., Broady, P. A., and Vincent, W. F., 1986a, Antarctic stream ecosystems: Variability in environmental properties and algal community structure, Int. Rev. Gesamte Hydrobiol. 71: 511–544.

    CAS  Google Scholar 

  • Howard-Williams, C., Vincent, W. F., and Wratt, G. S., 1986b, The Alph River ecosystem: A major freshwater environment in southern Victoria Land, N.Z. Antarct. Rec. 7: 21–33.

    Google Scholar 

  • Huguenin, R. L., Miller, K. J., and Leschine, S. B., 1983, Mars: A contamination potential?, Adv. Space Res. 38: 35–38.

    Google Scholar 

  • Johnson, P. W., and Sieburth, J. McN., 1979, Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass, Limnol. Oceanogr. 24: 928–935.

    Google Scholar 

  • Johnson, R. M., and Bellinofif, R. D., 1981, A taxonomic study of a dominant coryneform bacterial type found in Antarctic soils, Antarct. Res. Ser. Wash. 30: 169–184.

    Google Scholar 

  • Johnson, R. M., Madden, J. M., and Swafford, J. R., 1978, Taxonomy of Antarctic bacteria from soils and air, primarily of the McMurdo Station and Dry Valleys region, Antarct. Res. Ser. Wash. 30: 35–64.

    Google Scholar 

  • Johnson, R. M., Inai, M., and McCarthy, S., 1981, Characteristics of cold desert Antarctic coryneform bacteria, J. Ariz. Nev. Acad. Sci. 16: 51–60.

    Google Scholar 

  • Kappen, L., and Friedmann, E. I., 1983, Ecophysiology of lichens in the Dry Valleys of Southern Victoria Land, Antarctica. II. CO2 gas exchange in cryptoendolithic lichens, Polar Biol. 1: 227–232.

    Google Scholar 

  • Kappen, L., Friedmann, E. I., and Garty, J., 1981, Ecophysiology of lichens in the Dry Valleys of Southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat, Flora 171: 216–235.

    Google Scholar 

  • Karl, D. M., LaRock, J. W., and Schultz, D. J., 1977, Adenosine triphosphate and organic carbon in the Cariaco Trench, Deep Sea Res. 24: 105–113.

    CAS  Google Scholar 

  • Klein, H. P., 1977, The Viking biological investigations: General aspects, J. Geophys. Res. 82: 4677–4680.

    CAS  Google Scholar 

  • Klein, H. P., 1979, The Viking mission and the search for life on Mars, Rev. Geophys. Space Phys. 17: 1655–1662.

    Google Scholar 

  • Klingler, J. M., and Vishniac, H. S., 1989, Water potential of Antarctic soils, Polarforschung 58: 231–238.

    Google Scholar 

  • Kobori, H., Sullivan, C. W., and Shizuya, H., 1984, Bacterial plasmids in Antarctic natural microbial assemblages, Appl. Environ. Microbiol. 48: 515–518.

    PubMed  CAS  Google Scholar 

  • Konlechner, J. C., 1985, Investigation of the fate and effects of a paraffin-based crude oil in an Antarctic terrestrial ecosystem, N.Z. Antarct. Rec. 6: 40–46.

    Google Scholar 

  • Kottmeier, S. T., and Sullivan, C. W., 1988, Sea ice microbial community (SIMCO). 9. Effects of temperature and salinity on rates of metabolism and growth in autotrophs and heterotrophs. Polar Biol. 8: 293–304.

    Google Scholar 

  • Lange, O. L., and Kappen, L., 1972, Photosynthesis of lichens from Antarctica, Antarct. Res. Ser. Wash. 20: 83–95.

    CAS  Google Scholar 

  • Latter, P. M., and Heal, O. W., 1971, A preliminary study of the growth of fungi and bacteria from temperate and Antarctic soils in relation to temperature, Soil Biol. Biochem. 3: 365–379.

    Google Scholar 

  • Laws, R. M., 1985, Ecology of the Southern Ocean, Am. Sci. 73: 26–40.

    Google Scholar 

  • Lewis, D. H., and Smith, D. C., 1967, Sugar alcohols (polyols) in fungi and green plants, New Phytol. 66: 143–184.

    CAS  Google Scholar 

  • Lipps, J., 1978, Man’s impact along the Antarctic Peninsula, in: Environmental Impact in Antarctica (B. C. Parker, ed.), pp. 333–372, Virginia Polytechnic Institute, Blacksburg.

    Google Scholar 

  • Lister, A., 1984, Prédation in and Antarctic micro-arthropod community, Acarology 6: 886–892.

    Google Scholar 

  • Lister, A., Usher, M. B., and Block, W., 1987, Description and quantification of field attack rates by predatory mites: An example using an electrophoresis method with a species of Antarctic mite, Oecologia 72: 185–191.

    Google Scholar 

  • Love, F. G., Simmons, G. M. Jr., Parker, B. C., Wharton, R. A. Jr., and Seaburg, K. G., 1983, Modern Conophyton-like microbial mats discovered in Lake Vanda, Antarctica, Geomicrobiol. J. 3: 33–48.

    Google Scholar 

  • Lyakh, S. P., Kozlova, T. M., and Salivonik, S. M., 1984, Effect of periodic freezing and thawing of cells of the Antarctic black yeast Nadsoniella nigra var. hesuelica, Microbiology 52: 486–491.

    Google Scholar 

  • Madden, J. M., Siegel, S. K., and Johnson, R. M., 1979, Taxonomy of some Antarctic Bacillus and Corynebacterium species, Antarct. Res. Ser. Wash. 30: 77–103.

    CAS  Google Scholar 

  • Makyut, G. A., 1985, The ice environment, in: Sea Ice Biota (R. A. Horner, ed.), pp. 21–82, CRC Press, Boca Raton.

    Google Scholar 

  • Margni, R. A., and Castrelos, O. D., 1963, Exámenes bacteriológicos de aire, nieve y suelo de Cabo Primavera y Estación Científica Ellsworth, Inst. Antart. Argent. Publ. 76: 1–15.

    Google Scholar 

  • McConville, M. J., 1985, Chemical composition and biochemistry of sea ice microalgae, in: Sea Ice Biota (R. A. Horner, ed.), pp. 105–209, CRC Press, Boca Raton.

    Google Scholar 

  • McConville, M. J., and Wetherbee, R., 1983, The bottom-ice microalgal community from annual ice in inshore waters of East Antarctica, J. Phycol. 19: 431–439.

    Google Scholar 

  • McConville, M. J., Mitchell, C., and Wetherbee, R., 1985, Patterns of carbon assimilation in a microalgal community from annual sea ice, Polar Biol. 4: 135–142.

    CAS  Google Scholar 

  • McCraw, J. D., 1967, Soils of Taylor dry valley, Victoria Land, Antarctica, with notes on soils from other localities in Victoria Land, N.Z. J. Geol. Geophys. 10: 498–539.

    Google Scholar 

  • McGinnis, L. D., 1978, appendix: Letter and critique, in: Environmental Impact in Antarctica (B. C. Parker, ed.), pp. 253–254, Virginia Polytechnic Institute, Blacksburg.

    Google Scholar 

  • McKay, C. P., 1986, Exobiology and future Mars missions: The search for Mars’ earliest biosphere, Adv. Space Res. 6: 12: 269–285.

    PubMed  CAS  Google Scholar 

  • McKay, C. P., and Friedmann, E. I., 1984, Continuous temperature measurements in the cryptoendolithic microbial habitat by satellite-relay data acquisition system, Antarct. J. U.S. 19: 170–172.

    Google Scholar 

  • McKay, C. P., and Friedmann, E. I., 1985, Temperature variations in the cryptoendolithic microbial environment in the Antarctic Dry Valleys, Polar Biol. 4: 19–25.

    PubMed  CAS  Google Scholar 

  • McKay, C. P., Weed, R., Tyler, D. A., Vestal, J. R., and Friedmann, E. I., 1983, Studies of cryptoendolithic communities in the Antarctic cold desert, Antarct. J. U.S. 18: 227–228.

    Google Scholar 

  • McKay, C. P., Clow, G., Wharton, R. A., Jr., and Squyres, S., 1985, The thickness of ice on perennially frozen lakes. Nature (London) 313: 561–562.

    CAS  Google Scholar 

  • McLean, A. L., 1918, Bacteria of ice and snow in Antarctica, Nature (London) 102: 35–39.

    Google Scholar 

  • McLean, A. L., 1919, Bacteriological and other researches, Australasian Antarctic Expedition 1911–1914, Sci. Rep. C, Vol. 7, pp. 1–128.

    Google Scholar 

  • McMeekin, T. A., and Franzmann, P. D., 1988, Effect of temperature on the growth rates of halotolerant and halophilic bacteria isolated from Antarctic saline lakes. Polar Biol. 8: 281–285.

    Google Scholar 

  • Mercer, J. H., 1983, Cenozoic glaciation in the Southern Hemisphere, Ann. Rev. Earth Planet Sci. 11: 99–132.

    CAS  Google Scholar 

  • Meryman, H. T., 1966, Review of biological freezing, in: Cryobiology (H. T. Meryman, ed.), pp. 1–106, Academic Press, London.

    Google Scholar 

  • Meyer, G. H., 1962, Microbiological populations of Antarctic air, soil, snow and melt pools, Polar Rec. 11: 317–318.

    Google Scholar 

  • Meyer, G. H., Morrow, M. B., and Wyss, O., 1962, Viable microorganisms in a fifty year old yeast preparation in Antarctica, Nature (London) 196: 598–599.

    Google Scholar 

  • Meyer, G. H., Morrow, M. B., and Wyss, O., 1963, Viable microorganisms from faeces and foodstuffs from early Antarctic expeditions, Can. J. Microbiol. 9: 163–167.

    Google Scholar 

  • Mikell, A. T. Jr., Parker, B. C., and Simmons, G. M. Jr., 1984, Response of an Antarctic lake heterotrophic community to high dissolved oxygen, Appl. Environ. Microbiol. 47: 1062–1066.

    PubMed  CAS  Google Scholar 

  • Miller, K. J., Leschine, S. B., and Huguenin, R. L., 1983, Halotolerance of micro-organisms isolated from saline Antarctic Dry Valley soils, Antarct. J. U.S. 18: 222–223.

    Google Scholar 

  • Miotke, F., 1985, Die Dünen in Victoria Valley, Victoria Land, Antarktis. Ein Beitrag zur äolischen Formung im extrem kalten Klima, Polarforschung 55: 79–125.

    Google Scholar 

  • Miwa, T., 1975, Clostridia isolated from the soil in the east coast of Lützow-Holm Bay, East Antarctica, Antarct. Rec. 53: 89–99.

    Google Scholar 

  • Morelli, F. A., Cameron, R. E., Gensel, D. R., and Randall, L. P., 1972, Monitoring of Antarctic Dry Valley drilling sites, Antarct. J. U.S. 7: 92–94.

    Google Scholar 

  • Monta, R. Y., 1975, Psychrophilic bacteria, Bacterio. Rev. 39: 146–167.

    Google Scholar 

  • Morita, R. Y., Griffiths, R. P., and Hyasaka, S. S., 1977, Heterotrophic activity of microorganisms in Antarctic waters, in: Adaptations within Antarctic Ecosystems (G. A. Llano, ed.), pp. 99–113, Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Mudrey, M. G., Jr., McGinnis, L. D., and Treves, S. B., 1978, Summary of field activities of the Dry Valley Drilling Project, 1972–73 and 1973–74, in: Environmental Impact in Antarctica (B. C. Parker, ed.), pp. 179–210, Virginia Polytechnic Institute, Blacksburg.

    Google Scholar 

  • Myrcha, A., Pietr, S. J., and Tatur, A., 1985, Role of pygoscelid penguin rookeries in nutrient cycles at Admiralty Bay, King George Island, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. Condy, and R. M. Laws, eds.), pp. 156–162, Springer-Verlag, Berlin.

    Google Scholar 

  • Nakaya, S., Motoori, Y., and Nishimura, M., 1979, One aspect of the evolution of saline lakes in the Dry Valleys of south Victoria Land, Mem. Natl. Inst. Polar Res. (Tokyo) (Special Issue) 13: 49–52.

    CAS  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1976, Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio, Appl. Environ. Microbiol. 32: 617–622.

    PubMed  CAS  Google Scholar 

  • Orchard, V. A., and Corderoy, D. M., 1983, Influence of environmental factors on the decomposition of penguin guano in Antarctica, Polar Biol. 1: 199–204.

    Google Scholar 

  • Palmisano, A. C., and Simmons, G. M., Jr., 1987, Spectral downwelling irradiance in an Antarctic lake, Polar Biol. 7: 145–151.

    Google Scholar 

  • Palmisano, A. C., and Sullivan, C. W., 1983, Sea-ice microbial communities (SIMCO). 1. Distribution, abundance, and primary production of ice microalgae in McMurdo Sound, Antarctica, in 1980, Polar Biol. 2: 171–178.

    Google Scholar 

  • Palmisano, A. C., and Sullivan, C. W., 1985a, Physiological response of micro-algae in the ice platelet layer to low light conditions, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 84–88, Springer-Verlag, Berlin.

    Google Scholar 

  • Palmisano, A. C., and Sullivan, C. W., 1985b, Growth, metabolism and dark survival in sea ice microalgae, in: Sea Ice Biota (R. A. Horner, ed.), pp. 131–146, CRC Press, Boca Raton.

    Google Scholar 

  • Parker, B.C., 1972, Conservation of freshwater habitats on the Antarctic Peninsula, in: Proceedings of the Colloquium on Conservation Problems in Antarctica, 1971, Blacksburg, Virginia (B. C. Parker, ed.), pp. 143–162, Allen Press, Lawrence, Kans.

    Google Scholar 

  • Parker, B.C., 1978, Potential impact on Lake Bonney of activities associated with modelling freshwater Antarctic ecosystems, in: Environmental Impact in Antarctica (B. C. Parker, ed.), pp. 255–278, Virginia Polytechnic Institute, Blacksburg.

    Google Scholar 

  • Parker, B.C., and Simmons, G. M., Jr., 1985, Paucity of nutrient cycling and absence of food chains in the unique lakes of southern Victoria Land, in: Antarctic Nutrient Cycling and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 238–244, Springer-Verlag, Berlin.

    Google Scholar 

  • Parker, B. C., and Wharton, R. A., Jr., 1985, Physiological ecology of bluegreen algal mats (modern stromatolites) in Antarctic oasis lakes, Arch. Hydrobiol. Alg. Stud. 38/39: 331–348.

    Google Scholar 

  • Parker, B. C., Ford, A. B., Allnutt, T., Bishop, B., and Wendt, S., 1977, Baseline microbiological data for soils of the Dufek Massif, Antarct. J. U.S. 12: 24–26.

    Google Scholar 

  • Parker, B. C., Mudrey, M. G., Jr., Cartwright, K., and McGinnis, L. D., 1978a, Environmental appraisal for the Dry Valley Drilling Project, Phases III, IV, V (1973–74, 1974–75, 1975–76), in: Environmental Impact in Antarctica (B. C. Parker, ed.), pp. 37–144, Virginia Polytechnic Institute, Blacksburg.

    Google Scholar 

  • Parker, B.C., Howard, R. V., and Allnutt, F. C. T., 1978b, Summary of environmental monitoring and impact assessment of the DVDP, in: Environmental Impact in Antarctica (B.C. Parker, ed.), pp. 211–251, Virginia Polytechnic Institute, Blacksburg.

    Google Scholar 

  • Parker, B. C., Simmons, G. M., Jr., Love, F. G., Wharton, R. A., Jr., and Seaburg, K. G., 1981, Modern stromatolites in Antarctic Dry Valley lakes, BioScience 31: 656–661.

    Google Scholar 

  • Parker, B. C., Boyer, S., Allnutt, F. C. T., Seaburg, K. G., Wharton, R. A. Jr., and Simmons, G. M. Jr., 1982a, Soils from the Pensacola Mountains, Antarctica: Physical, chemical and biological characteristics, Soil. Biol. Biochem. 14: 265–271.

    CAS  Google Scholar 

  • Parker, B. C., Simmons, G. M., Jr., Kaspar, M., Mikell, A., Love, F. G., Seaburg, K. G., and Wharton, R. A., Jr., 1982b, Physiological adaptations of biota in Antarctic oasis lake—year 2, Antarct. J. U.S. 17: 191–193.

    Google Scholar 

  • Parker, B. C., Simmons, G. M., Jr., Wharton, R. A., Jr., Seaburg, K.G., and Love, F. G., 1982c, Removal of organic and inorganic material from Antarctic lakes by aerial escape of blue-green algal mats, J. Phycol. 18: 72–78.

    Google Scholar 

  • Phillpot, H. R., 1985, Physical geography—climate, in: Key Environments—Antarctica (W. N. Bonner and D. W. H. Walton, eds.), pp. 23–38, Pergamon Press, Oxford.

    Google Scholar 

  • Pickard, J. (ed.), 1986, Antarctic Oasis. Terrestrial Environments and History of the Vestfold Hills, Academic Press, North Ryde, Australia.

    Google Scholar 

  • Poindexter, J. S., 1981, Oligotrophy: Fast and famine existence, in: Advances in Microbial Ecology, Vol. 5 (M. Alexander, ed.), pp. 63–89, Plenum Press, New York.

    Google Scholar 

  • Prévot, A. R., and Moureau, M., 1952, Recherches sur les bactéries anaerobies de la Terre Adélie (prelevées par la première expedition antarctique française), Ann. Inst. Pasteur 82: 13–19.

    Google Scholar 

  • Priddle, J., 1980a, The production ecology of benthic plants in some Antarctic lakes. I. In situ production studies, J. Ecol. 68: 141–153.

    Google Scholar 

  • Priddle, J., 1980b, The production ecology of benthic plants in some Antarctic lakes. II. Laboratory physiology studies, J. Ecol. 68: 155–166.

    Google Scholar 

  • Priddle, J., and Belcher, J. H., 1981, Freshwater biology at Rothera Point, Adelaide Island. 2. Algae, Br. Antarct.Surv. Bull. 53: 1–10.

    Google Scholar 

  • Priddle, J., and Heywood, R. B., 1980, Evolution of Antarctic lake ecosystems, Biol. J. Linn. Soc. 14: 51–66.

    Google Scholar 

  • Priddle, J., Hawes, I., and Ellis-Evans, J. C., 1986, Antarctic aquatic ecosystems as habitats for phytoplankton, Biol. Rev. 61: 199–238.

    Google Scholar 

  • Pugh, G. J. F., 1980, Strategies in fungal ecology, Trans. Br. Mycol. Soc. 75: 1–14.

    Google Scholar 

  • Pugh, G. J. F., and Allsopp, D., 1982, Micro-fungi on Signy Island, South Orkney Islands, South Atlantic Ocean, Br. Antarct. Surv. Bull. 57: 55–68.

    Google Scholar 

  • Ramsay, A. J., 1983, Bacterial biomass in ornithogenic soils of Antarctica, Polar Biol. 1: 221–225.

    Google Scholar 

  • Roberts, B., 1958, Chronological list of Antarctic expeditions, Polar Rec. 9: 191–239.

    Google Scholar 

  • Schlichting, H. E., Jr., Speziale, B. J., and Zink, R. M., 1978, Dispersal of algae and protozoa by Antarctic flying birds, Antarct. J. U.S. 13: 147–149.

    Google Scholar 

  • Schreiber, U., 1979, Cold-induced uncoupling of energy transfer between phycobilins and chlorophyll in Anacystis nidulans, FEBS Lett. 107: 4–9.

    PubMed  CAS  Google Scholar 

  • Seaburg, K. G., Parker, B. C., Wharton, R. A., Jr., and Simmons, G. M., Jr., 1981, Temperaturegrowth responses of algal isolates from Antarctic oasis lakes, J. Phycol. 17: 353–360.

    Google Scholar 

  • Siebert, J., and Hirsch, P., 1988, Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo Dry Valleys (South Victoria Land), Polar Biol. 9: 37–44.

    PubMed  CAS  Google Scholar 

  • Sieburth, J. McN., 1961, Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals, J. Bacteriol. 82: 72–79.

    PubMed  CAS  Google Scholar 

  • Sieburth, J. McN., 1963, Bacterial habitats in the Antarctic environment, in: Symposium on Marine Micro-biology (C. H. Oppenheimer, ed.), pp. 533–548, Charles C. Thomas, Springfield, Ill.

    Google Scholar 

  • Sieburth, J. McN., 1965, Microbiology of Antarctica, in: Biogeography and Ecology in Antarctica (J. van Mieghem and van Oye, eds.), pp. 267–295, Dr. W. Junk, The Hague.

    Google Scholar 

  • Siegel, B. Z., Siegel, S. M., Chen, J., and La Rock, P., 1983, Extraterrestrial habitat on earth: The algal mat of Don Juan Pond, Adv. Space Res. 3: 39–42.

    PubMed  CAS  Google Scholar 

  • Sieracki, M. E., Johnson, P. W., and Sieburth, J. McN., 1985, Detection, enumeration, and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy, Appl. Environ. Microbiol. 49: 799–810.

    PubMed  CAS  Google Scholar 

  • Simmons, G. M., Wharton, R. A., Jr., McKay, P., Nedell, S., and Clow, G., 1987, Sand/ice interactions and sediment deposition in perennially ice-covered Antarctic lakes. Antarct. J. U.S. 22: 237–240.

    Google Scholar 

  • Smith, H. G., 1978, The distribution and ecology of terrestrial Protozoa of Subantarctic and Antarctic islands, Br. Antarct. Surv. Sci. Rep. 95: 1–104.

    Google Scholar 

  • Smith, H. G., 1985, The colonization of volcanic tephra on Deception Island by Protozoa: Long-term trends, Br. Antarct. Surv. Bull. 66: 19–33.

    Google Scholar 

  • Smith, R. I. L., 1984a, Colonization and recovery by cryptogams following recent volcanic activity on Deception Island, South Shetland Islands, Br. Antarct. Surv. Bull. 62: 25–51.

    Google Scholar 

  • Smith, R. I. L., 1984b, Terrestrial plant biology of the sub-Antarctic and Antarctic, in: Antarctic Ecology (R. M. Laws, ed.), pp. 61–162, Academic Press, London.

    Google Scholar 

  • Smith, R. I. L., 1988, Destruction of Antarctic terrestrial ecosystems by a rapidly increasing fur seal population. Biol. Conserv. 45: 55–72.

    Google Scholar 

  • Smith, R. I. L., and Poncet, S., 1987, Deschampsia antarctica and Colobanthus quitensis in the Terra Firma Islands, Br. Antarct. Surv. Bull. 74: 31–35.

    Google Scholar 

  • Sømme, L., and Block, W., 1982, Cold hardiness of Collembola at Signy Island, Maritime Antarctica, Oikos 39: 168–176.

    Google Scholar 

  • Soneda, M., 1961, On some yeasts from the Antarctic region, Biol. Results Jpn. Res. Exp. 15: 3–10.

    Google Scholar 

  • Speir, T. W., and Cowling, J. C., 1984, Ornithogenic soils of the Cape Bird Adelie penguin rookeries, Antarctica. 1. Chemical properties, Polar Biol. 2: 199–206.

    Google Scholar 

  • Straka, R. P., and Stokes, J. L., 1960, Psychrophilic bacteria from Antarctica, J. Bacteriol. 80: 622–625.

    PubMed  CAS  Google Scholar 

  • Sullivan, C. W., 1985, Sea ice bacteria: Reciprocal interactions of the organisms and their environment, in: Sea Ice Biota (R. A. Horner, ed.), pp. 159–171, CRC Press, Boca Raton.

    Google Scholar 

  • Sullivan, C. W., and Palmisano, A. C. 1984, Sea-ice microbial communities: Distribution, abundance and diversity of ice bacteria in McMurdo Sound, Antarctica, Appl. Environ. Microbiol. 47: 788–795.

    PubMed  CAS  Google Scholar 

  • Sullivan, C. W., Palmisano, A. C., Kottmeier, S., McGrath Grossi, D., and Moe, R., 1985, Influence of light on growth and development of the sea-ice microbial community of McMurdo Sound, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 78–83, Springer-Verlag, Berlin.

    Google Scholar 

  • Sun, S. H., Huppert, M., and Cameron, R. E., 1978, Identification of some fungi from soil and air of Antarctica, Antarct. Res. Ser. Wash. 30: 1–26.

    Google Scholar 

  • Sussman, A. S., and Halvorson, H. O., 1966, Spores, Harper and Row, New York and London.

    Google Scholar 

  • Svensson, B. H., 1980, Carbon dioxide and methane fluxes from the ombrotrophic parts of a Subarctic mire, Ecol. Bull. (Stockholm) 30: 235–250.

    CAS  Google Scholar 

  • Tanner, A. C., and Herbert, R. A., 1981, Nutrient regeneration in maritime Antarctic sediments, Kiel Meeresforsch. 5: 390–395.

    CAS  Google Scholar 

  • Tearle, P. V., 1987, Cryptogamic carbohydrate release and microbial response during spring freeze-thaw cycles in Antarctic fellfield fines, Soil Biol. Biochem. 19: 381–390.

    CAS  Google Scholar 

  • Thompson, D. C., Bromley, A. M., and Craig, R. M. F., 1971, Ground temperatures in an Antarctic dry valley, N.Z. J. Geol. Geophys. 14: 477–483.

    Google Scholar 

  • Tominaga, H., 1977, Photosynthetic nature and primary productivity of Antarctic freshwater phytoplankton, Jpn. J. Limnol. Oceanogr. 11: 596–607.

    Google Scholar 

  • Torii, T., Matsumoto, G. I., and Nakaya, S., 1989, The chemical characteristics of Antarctic lakes and ponds, with special emphasis on the distribution of nutrients. Polarforschung 58: 219–230.

    Google Scholar 

  • Tschermak-Woess, E., and Riedmann, E. I., 1984, Hemichloris antarctica, new genus, new species, Chlorococcales, Chlorophyta. A cryptoendolithic alga from Antarctica, Phycologia 23: 443–454.

    PubMed  CAS  Google Scholar 

  • Tsiklinsky, Mlle., 1908, La flore microbienne dans les régions du Pole Sud, in: Expedition Antarctique Française 1903–1905 (J. Charcot, ed.), pp. 1–33, Masson et Cie., Paris.

    Google Scholar 

  • Tubaki, K., 1961, On some fungi isolated from the Antarctic materials, Biol. Results Jpn. Antarctic Res. Exp. (Special Publ.) 14: 3–9.

    Google Scholar 

  • Tuck, A. F., 1987, Stratospheric Ozone, United Kingdom Stratospheric Ozone Group, First Report, Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Tuovila, B. J., and LaRock, P. A., 1987, Occurrence and preservation of ATP in Antarctic rocks and its implications in biomass determinations, Antarct. J. U.S. 19: 181–182.

    Google Scholar 

  • Ugolini, F. C., and Anderson, D. M., 1973, Ionic migration and weathering in frozen Antarctic soils, Soil Sci. 115: 461–470.

    CAS  Google Scholar 

  • Uydess, I. L., and Vishniac, W. V., 1976, Electron microscopy of Antarctic soil bacteria, in: Extreme Environments; Mechanisms of Microbial Adaptation (M. R. Heinrich, ed.), pp. 29–56, Academic Press, New York.

    Google Scholar 

  • Van Liere, L., and Walsby, A. E., 1982, Interactions of cyanobacteria with light, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 9–45, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Vestal, J. R., 1988a, Biomass of the cryptoendolithic microbiota from the Antarctic desert, Appl. Environ. Microbiol. 54: 957–959.

    PubMed  CAS  Google Scholar 

  • Vestal, J. R., 1988b, Carbon metabolism in the cryptoendolithic microbiota from the Antarctic desert, Appl. Environ. Microbiol. 54: 960–965.

    PubMed  CAS  Google Scholar 

  • Vestal, J. R., Federle, T. W., and Friedmann, E. I., 1984, The effects of light and temperature on the Antarctic cryptoendolithic microbiota in vitro, Antarct. J. U.S. 19: 173–174.

    Google Scholar 

  • Vincent, W. F., 1981, Production strategies in Antarctic inland waters: Phytoplankton eco-physiology in a permanently ice-covered lake, Ecology 62: 1215–1224.

    Google Scholar 

  • Vincent, W. F., 1985, Factors controlling phytoplankton production in Lake Vanda (77 deg S), Can. J. Fish. Aquat. Sci. 39: 1602–1609.

    Google Scholar 

  • Vincent, W. F., 1988, Microbial Ecosystems of Antarctica, Cambridge University Press, Cambridge.

    Google Scholar 

  • Vincent, W. F., and Howard-Williams, C., 1985, Ecosystem properties of Dry Valley lakes, N.Z. Antarct. Rec. (Special Issue) 6: 11–20.

    Google Scholar 

  • Vincent, W. F., and Howard-Williams, C., 1986a, Antarctic stream ecosystems: Physiological ecology of a blue-green algal epilithion, Freshwater Biol. 16: 219–234.

    CAS  Google Scholar 

  • Vincent, W. E, and Howard-Williams, C., 1986b, Microbial ecology of Antarctic streams, in: Perspectives in Microbial Ecology (F. Megusar and M. Cantar, eds.), pp. 201–206, Slovene Society for Microbiology, Ljubljana, Yugoslavia.

    Google Scholar 

  • Vincent, W. F., and Vincent, C. L., 1982, Factors controlling phytoplankton production in Lake Vanda (77 deg S), Can. J. Fish. Aquat. Sci. 39: 1602–1609.

    Google Scholar 

  • Vincent, W. F., Downes, M. T., and Vincent, C. L., 1981, Nitrous oxide cycling in Lake Vanda, Antarctica, Nature (London) 292: 618–620.

    CAS  Google Scholar 

  • Vishniac, H. S., 1983, An enation system for the isolation of Antarctic yeasts inhibited by conventional media, Can. J. Microbiol. 29: 90–95.

    Google Scholar 

  • Vishniac, H. S., and Hempfling, W. P., 1979a, Evidence of an indigenous microbiota (yeast) in the Dry Valleys of Antarctica, J. Gen. Microbiol. 112: 301–314.

    Google Scholar 

  • Vishniac, H. S., and Hempfling, W. P., 1979b, Cryptococcus vishniacii sp. nov., an Antarctic yeast, Int. J. Syst. Bacteriol. 29: 153–158.

    Google Scholar 

  • Vishniac, H. S., and Klingler, J. M., 1986, Yeasts in the Antarctic deserts, in: Perspectives in Microbial Ecology (F. Megusar and M. Gantar, eds.), pp. 46–51, Slovene Society for Microbiology, Ljubljana, Yugoslavia.

    Google Scholar 

  • Vishniac, W. V., and Mainzer, S. E., 1973, Antarctica as a Martian model, Life Sci. Space Res. 11: 25–31.

    PubMed  CAS  Google Scholar 

  • Walton, D. W. H., 1982, The Signy Island terrestrial reference sites: XV. Microclimate monitoring, 1972–74, Br. Antarct. Surv. Bull. 55: 111–126.

    Google Scholar 

  • Walton, D. W. H., 1984, The terrestrial environment, in: Antarctic Ecology (R. M. Laws, ed.), pp. 1–60, Academic Press, London.

    Google Scholar 

  • Walton, D. W. H., 1985, Preliminary study of the action of crustose lichens on rock surfaces in Antarctica, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. Condy, and R. M. Laws, eds.), pp. 180–185, Springer-Verlag, Berlin.

    Google Scholar 

  • Walton, D. W. H., 1987, Antarctic terrestrial ecosystems, Environ. Int. 13: 83–93.

    Google Scholar 

  • Watanuki, K., Torii, T., Murayama, H., Hirabayashi, J., Sano, M., and Abiko, T., 1977, Geochemical features of Antarctic lakes, Antarct. Rec. 59: 18–25.

    Google Scholar 

  • West, W., and West, G. S., 1911, Freshwater algae, in: British Antarctic Expedition, 1907–09. Reports of the Scientific Investigations. Biology, Vol. 1 (J. Murray, ed.), pp. 263–298, Heinemann, London.

    Google Scholar 

  • Wharton, R. A., Vinyard, W. C., Parker, B. C., Simmons, G. M., and Seaburg, K. G., 1981, Algae in cryoconite holes in Canada Glacier in southern Victoria Land, Antarctica, Phycologia 20: 208–211.

    Google Scholar 

  • Wharton, R. A., Jr., Parker, B. C., and Simmons, G. M., Jr., 1983, Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes, Phycologia 22: 355–366.

    Google Scholar 

  • Wharton, R. A., Jr., McKay, C. P., Simmons, G. M., Jr., and Parker, B. C., 1985, Cryoconite holes on glaciers, BioScience 35: 499–503.

    PubMed  Google Scholar 

  • Wharton, R. A., Jr., McKay, G. M., Simmons, G. M., Jr., and Parker, B. C., 1986, Oxygen budget of a perennially ice-covered Antarctic dry valley lake, Limnol. Oceanogr. 31: 437–443.

    PubMed  CAS  Google Scholar 

  • Whitaker, T. M., 1977, Sea ice habitats of Signy Island (South Orkneys) and their primary productivity, in: Adaptations within Antarctic Ecosystems (G. A. Llano, ed.), pp. 75–82, Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Womersley, C., and Smith, L., 1981, Anhydrobiosis in nematodes. I: the role of glycerol, myoinositol and trehalose during desiccation, Comp. Biochem. Physiol. 70B: 579–586.

    CAS  Google Scholar 

  • Wood, A. M., Horan, P. K., Muirhead, K., Phinney, D. A., Yentsch, C. M., and Waterbury, J. B., 1985, Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy and flow cytometry, Limnol. Oceanogr. 30: 1303–1315.

    CAS  Google Scholar 

  • Wright, S. W., and Burton, H. R., 1981, The biology of Antarctic saline lakes, Hydrobiologia 81/82: 319–338.

    Google Scholar 

  • Wynn-Williams, D. D., 1980, Seasonal fluctuations in microbial activity in Antarctic moss peat, Biol. J. Linn. Soc. 14: 11–28.

    Google Scholar 

  • Wynn-Williams, D. D., 1982, Simulation of seasonal changes in microbial activity of maritime Antarctic peat, Soil. Biol. Biochem. 14: 1–12.

    CAS  Google Scholar 

  • Wynn-Williams, D. D., 1983, Distribution and characteristics of Chromobacterium in the maritime and sub-Antarctic, Polar Biol. 2: 101–108.

    Google Scholar 

  • Wynn-Williams, D. D., 1984, Comparative respirometry of peat decomposition on a latitudinal transect in the maritime Antarctic, Polar Biol. 3: 173–181.

    Google Scholar 

  • Wynn-Williams, D. D., 1985a, Comparative microbiology of moss-peat decomposition on the Scotia Arc and Antarctica Peninsula, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 204–210, Springer-Verlag, Berlin.

    Google Scholar 

  • Wynn-Williams, D. D., 1985b, The biota of a lateral moraine and hinterland of the Blue Glacier, South Victoria Land, Antarctica, Br. Antarct. Surv. Bull. 66: 1–5.

    Google Scholar 

  • Wynn-Williams, D. D., 1985c, Photofading retardant for epifluorescence microscopy in soil microecological studies, Soil Biol. Biochem. 17: 739–746.

    Google Scholar 

  • Wynn-Williams, D. D., 1986, Microbial colonisation of Antarctic fellfield soils, in: Perspectives in Microbial Ecology (F. Megusar and M. Cantar, eds.), pp. 191–200, Slovene Society for Microbiology, Ljubljana, Yugoslavia. Microbial Ecology, Ljubljana, August 1986.

    Google Scholar 

  • Wynn-Williams, D. D., 1988, Cotton strip decomposition relative to environmental factors in the Maritime Antarctic, in: Cotton Strip Assay: An Index of Decomposition in Soils (A. F. Harrison, P. M. Latter, and D. W. H. Walton, eds.), ITE Symp., Vol. 24, pp. 126–133. Institute of Terrestrial Ecology, Grange-over-Sands.

    Google Scholar 

  • Wynn-Williams, D. D., 1989, TV image analysis of microbial communities in Antarctic fellfields, Polarforschung 58: 239–250.

    Google Scholar 

  • Yarrington, M. R., and Wynn-Williams, D. D., 1985, Methanogenesis and the anaerobic microbiology of a wet moss community at Signy Island, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 229–233, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Wynn-Williams, D.D. (1990). Ecological Aspects of Antarctic Microbiology. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7612-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7612-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7614-9

  • Online ISBN: 978-1-4684-7612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics