Skip to main content

Control of Satellite Cell Proliferation

  • Chapter
Myoblast Transfer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 280))

Abstract

Satellite cells are reserve stem cells of adult skeletal muscle and thus represent a potential source of myogenic cells to use in myoblast replacement therapy of neuromuscular disease. Optimal application of this strategy requires knowledge of factors that control the growth and differentiation of satellite cells. Control of satellite cell proliferation is a complex phenomenon determined by the contribution of both positive and negative factors (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R. E. and Boxhorn, L. K., 1989, Regulation of skeletal-muscle satellite cell-proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor-I, and fibroblast growth-factor, J. Cell. Physiol., 138: 311.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R. E., Dodson, M. V., and Luiten, L. S., 1984, Regulation of skeletal muscle satellite cell proliferation by bovine pituitary fibroblast growth factor, Exp. Cell Res., 152:154.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, R., 1986a, Proliferation of muscle satellite cells on intact myofibers in culture, Dev. Biol., 115:129.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, R., 1986b, A satellite cell mitogen from crushed adult muscle, Dev. Biol, 115:140.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, R., 1989a, Analysis of muscle regeneration using single myofibers in culture, Med. Sci. Sports Exer. (In Press).

    Google Scholar 

  • Bischoff, R., 1989b, Interaction between satellite cells and skeletal muscle fibers, Development (In Press).

    Google Scholar 

  • Clegg, C. H., Linkhart, T. A., Olwin, B. B., and Hauschka, S. D., 1987, Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor, J. Cell Biol., 105: 949.

    Article  PubMed  CAS  Google Scholar 

  • Darr, K. C. and Schultz, E., 1987, Exercise-induced satellite cell activation in growing and mature skeletal muscle, J. Appl. Physiol., 63: 1816.

    PubMed  CAS  Google Scholar 

  • DiMario, J., Buffinger, N., Yamada, S., and Strohman, R. C., 1989, Fibroblast growth factor in the extracellular matrix of dystrophic ( MDX) mouse muscle, Science, 244: 688.

    Article  PubMed  CAS  Google Scholar 

  • Florini, J. R. and Ewton, D. Z., 1988, Actions of transforming growth factor-beta on muscle cells, J. Cell. Physiol., 135: 301.

    Article  PubMed  CAS  Google Scholar 

  • Giddings, C. J., Neaves, W. B., and Gonyea, W. J., 1985, Muscle fiber necrosis and regeneration induced by prolonged weight-lifting exercise in the cat, Anat. Rec., 211:133.

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., Cheng, J., Lui, G.-M., Baird, A., and Bohlent, P., 1984, Isolation of brain fibroblast growth factor by heparin-Sepharose affinity chromatography: Identity with pituitary fibroblast growth factor, Proc. Nat. Acad. Sci. USA, 81: 6963.

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., Weseman, J., and Moran, J., 1975, Presence in brain of a mitogenic agent promoting proliferation of myoblasts in low density culture, Nature, 256: 216.

    Article  PubMed  CAS  Google Scholar 

  • Grounds, M. D. and McGeachie, J. K., 1987, A model of myogenesis in vivo, derived from detailed autoradiographic studies of regenerating skeletal muscle, challenges the concept of quantal mitosis, Cell Tissue Res., 250: 563.

    PubMed  CAS  Google Scholar 

  • Irintchev, A. and Wernig, A., 1987, Muscle damage and repair in voluntarily running mice: strain and muscle differences, Cell Tissue Res., 249: 509.

    Article  PubMed  CAS  Google Scholar 

  • Jodczyk, K. J., Bankowski, E., and Borys, A., 1986, Stimulatory effect of platelet-breakdown products on muscle regeneration, Zentralbl. Allg. Pathol., 131: 357.

    PubMed  CAS  Google Scholar 

  • Kardami, E., Spector, D., and Strohman, R. C., 1985, Myogenic growth factor present in skeletal muscle is purified by heparin-affinity chromatography, Proc. Nat. Acad. Sci. USA, 82:8044.

    Article  PubMed  CAS  Google Scholar 

  • McGeachie, J. and Allbrook, D., 1978, Cell proliferation in skeletal muscle following denervation or tenotomy. A series of autoradiographic studies, Cell Tissue Res., 193:259.

    Article  PubMed  CAS  Google Scholar 

  • McGeachie, J. K. and Grounds, M. D., 1987, Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study., Cell Tissue Res., 248:125.

    Article  PubMed  CAS  Google Scholar 

  • Ross, J. J., Duxson, M. J., and Harris, A. J., 1987, Formation of primary and secondary myotubes in rat lumbrical muscles, Development, 100:383.

    PubMed  CAS  Google Scholar 

  • Venkatasubramanian, K. and Solursh, M., 1984, Chemotactic behavior of myoblasts, Dev. Biol., 104:428.

    Article  PubMed  CAS  Google Scholar 

  • Westall, F. C., Lennon, V. A., and Gospodarowicz, D., 1974, Brain-derived fibroblast growth factor: identity with a fragment of the basic protein of myelin, Proc. Natnl. Acad. Sci USA, 75: 4675

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Bischoff, R. (1990). Control of Satellite Cell Proliferation. In: Griggs, R.C., Karpati, G. (eds) Myoblast Transfer Therapy. Advances in Experimental Medicine and Biology, vol 280. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5865-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5865-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5867-1

  • Online ISBN: 978-1-4684-5865-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics