Skip to main content

Estimating Rate and Time in Molecular Phylogenies: Beyond the Molecular Clock?

  • Chapter
Molecular Systematics of Plants II

Abstract

The study of rates of character evolution has been a cornerstone of evolutionary biology since the pioneering work of Simpson (1944). It has occupied a similar position in molecular evolutionary studies since Zuckerkandl and Pauling’s (1962, 1965) proposal of the molecular clock. There is a fascinating contrast between these two works, however. Simpson used information about time, from the fossil record, to draw inferences about rates and modes of evolution. His main conclusion was that such rates are highly variable. Although also using information from fossils, Zuckerkandl and Pauling came to just the opposite conclusion about rates of protein evolution. They then argued that if proteins evolved at a roughly constant rate, a study of rates and modes of evolution could be used to say something about timing of events in evolutionary history. Both these ideas about the tempo of character evolution have achieved nearly the status of null hypotheses in their respective disciplines. Although Simpson clearly inferred that some morphological rates have been nearly linear, or “clock-like” over at least moderate periods of time (e.g., Simpson, 1944, pp. 203-204), few paleontologists or morphologists give credence to the notion of morphological clocks. And although there is indisputable evidence that many genes and proteins do not evolve at a constant rate through time (Britten, 1986; Avise, 1994), molecular rate constancy continues to be viewed as a reasonable model even across vast reaches of the tree of life (Wray et al., 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Avise, J. C. 1994. Molecular Markers, Natural History and Evolution. Chapman & Hall, New York.

    Book  Google Scholar 

  • Bogart, K. P. 1990. Introductory Combinatorics, second edition. Harcourt Brace Jovanovich, San Diego.

    Google Scholar 

  • Britten, R. J. 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science stant 231:1393–1398.

    CAS  Google Scholar 

  • Bruns, T. D., and T. M. Szaro. 1992. Rate and mode differences between nuclear and mitochondrial small-subunit rRNA genes in mushrooms. Molecular Biology and Evolution 9:836–855.

    PubMed  CAS  Google Scholar 

  • Bulmer, M. 1989. Estimating the variability of substitution rates. Genetics 123:615–619.

    PubMed  CAS  Google Scholar 

  • Cavender, J. A. 1978. Taxonomy with confidence. Mathematical Biosciences 40:271–280.

    Article  Google Scholar 

  • Chakraborty, R. 1977. Estimation of time of divergence from phylogenetic studies. Canadian Journal of Genetics and Cytology 19:217–223.

    CAS  Google Scholar 

  • Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y.-L. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedren, B. S. Gaut, R. K. Jansen, K.-J. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H. Learn, Jr., S. W. Graham, S. C. H. Barrett, S. Dayanandan, and V. A. Albert. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80:528–580.

    Article  Google Scholar 

  • Cox, D. R., and H. D. Miller. 1977. The Theory of Stochastic Processes. Chapman & Hall, London.

    Google Scholar 

  • Donnelly, P., S. Tavare, D. J. Balding, and R. C. Griffiths. 1996. Estimating the age of the common ancestor of men from the ZFY intron. Science 272:1357–1359.

    Article  PubMed  CAS  Google Scholar 

  • Dopazo, J. 1994. Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach. Journal of Molecular Evolution 38:300–304.

    Article  PubMed  CAS  Google Scholar 

  • Dorit, R. L., H. Akashi, and W. Gilbert. 1995. Absence of polymorphism at the ZFY locus on the human Y chromosome. Science 268:1183–1185.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, J. A., and M. J. Donoghue. 1993. Phylogenies and angiosperm diversification. Paleobiology 19:141–167.

    Google Scholar 

  • Ewens, W. J. 1990. Population genetics theory—the past and future. In Mathematical and Statistical Developments of Evolutionary Theory, ed. S. Lessard, pp. 177–227. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Farris, J. S. 1969. On the cophenetic correlation coefficient. Systematic Zoology 18:279–285.

    Article  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368–376.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1984. Distance methods for inferring phylogenies: a justification. Evolution 38:16–24.

    Article  Google Scholar 

  • Felsenstein, J. 1988. Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics 22:521–565.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1992. Estimating effective population size from samples of sequences: inefficiency of pairwise and segregating sites as compared to phylogenetic estimates. Genetics Research 56:139–147.

    Article  Google Scholar 

  • Felsenstein, J. 1993. PHYLIP: Phylogenetic Inference Package. University of Washington, Seattle.

    Google Scholar 

  • Felsenstein, J., and G. A. Churchill. 1996. A hidden markov model approach to variation among sites in rate of evolution. Molecular Biology and Evolution 13:93–104.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W. M. 1976. Molecular evolutionary clocks. In Molecular Evolution, ed. F. J. Ayala, pp. 160–178. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Fu, Y.-X. 1996. Estimating the age of the common ancestor of a DNA sample using the number of segregating sites. Genetics 144:829–838.

    PubMed  CAS  Google Scholar 

  • Fu, Y.-X., and W.-H. Li. 1996. Estimating the age of the common ancestor of men from the ZFY intron. Science 272:1356–1357.

    Article  PubMed  CAS  Google Scholar 

  • Gaut, B., S. V. Muse, W. D. Clark, and M. T. Clegg. 1992. Relative rates of nucleotide substitution at the rbcL locus in monocotyledonous plants. Journal of Molecular Evolution 35:292–303.

    Article  PubMed  CAS  Google Scholar 

  • Gaut, B., S. V. Muse, and M. T. Clegg. 1993. Relative rates of nucleotide substitution in the chloroplast genome. Molecular Phylogenetics and Evolution 2:89–96.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J. H. 1986. Rates of molecular evolution. Annual Review of Ecology and Systematics 17:637–665.

    Article  Google Scholar 

  • Gillespie, J. H. 1989. Lineage effects and the index of dispersion of molecular evolution. Molecular Biology and Evolution 6:636–647.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. H. 1991. The Causes of Molecular Evolution. Oxford University Press, New York.

    Google Scholar 

  • Gillespie, J. H., and C. H. Langley. 1979. Are evolutionary rates really variable? Journal of Molecular Evolution 13:27–34.

    Article  PubMed  CAS  Google Scholar 

  • Gingerich, P. D. 1986. Temporal scaling of molecular evolution in primates and other mammals. Molecular Biology and Evolution 3:205–221.

    PubMed  CAS  Google Scholar 

  • Gittleman, J. L., C. G. Anderson, M. Kot, and H.-K. Luh. 1996. Comparative tests of evolutionary lability and rates using molecular phylogenies. In New Uses for New Phylogenies, eds. P. H. Harvey, A. J. L. Brown, J. Maynard Smith, and S. Nee, pp. 289–307. Oxford University Press, Oxford.

    Google Scholar 

  • Goldman, N. 1993. Statistical tests of models of DNA substitution. Journal of Molecular Evolution 36:182–198.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, N. 1994. Variance to mean ratio, R(t), for Poisson process on phylogenetic trees. Molecular Phylogenetics and Evolution 3:230–239.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, N., and Z. Yang. 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molecular Biology and Evolution 11:725–736.

    PubMed  CAS  Google Scholar 

  • Griffiths, R. C., and S. Tavare. 1994. Ancestral inference in population genetics. Statistical Science 9:307–319.

    Article  Google Scholar 

  • Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22:160–174.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, M., H. Kishino, and T. Yano. 1989. Estimation of branching dates among primates by molecular clocks of nuclear DNA which slowed down in Hominoidea. Journal of Human Evolution 18:461–476.

    Article  Google Scholar 

  • Hasegawa, M., A. Di Rienzo, T. D. Kocher, and A. C. Wilson. 1993. Toward a more accurate time scale for the human mitochondrial DNA tree. Journal of Molecular Evolution 37:347–354.

    Article  PubMed  CAS  Google Scholar 

  • Hillis, D., B. K. Mable, and C. Moritz. 1996. Applications of molecular systematics: the state of the field and a look to the future. In Molecular Systematics, second edition, eds. D. M. Hillis, C. Moritz, and B. K. Mable, pp. 515–543. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Hudson, R. R. 1990. Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology 7:1–44.

    Google Scholar 

  • Hughey, R., and A. Krogh. 1996. Hidden markov models for sequence analysis: extension and analysis of the basic method. Computer Applications in the Biosciences 12:95–107.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kishino, H., and M. Hasegawa. 1990. Converting distance to time: application to human evolution. Methods in Enzymology 183:550–570.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., K. Tamura, and M. Nei. 1993. MEGA: Molecular Evolutionary Genetic Analysis, version 1.0. Pennsylvania State University, University Park.

    Google Scholar 

  • Langley, C. H., and W. Fitch. 1974. An estimation of the constancy of the rate of molecular evolution. Journal of Molecular Evolution 3:161–177.

    Article  PubMed  CAS  Google Scholar 

  • Li, P., and J. Bousquet. 1992. Relative rate test for nucleotide substitutions between lineages. Molecular Biology and Evolution 9:1185–1189.

    CAS  Google Scholar 

  • Li, W.-H., and D. Graur. 1991. Fundamentals of Molecular Evolution. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Li, W.-H., and M. Tanimura. 1987. The molecular clock runs more slowly in man than in apes and monkeys. Nature 326:93–96

    Article  Google Scholar 

  • Li, W.-H., C.-I. Wu, and C.-C. Luo. 1985. Anew method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Molecular Biology and Evolution 2:150–174.

    PubMed  Google Scholar 

  • Lindgren, B. W. 1976. Statistical Theory, third edition. Macmillan, New York.

    Google Scholar 

  • Linhart, H., and W. Zucchini. 1986. Model Selection. Wiley, New York.

    Google Scholar 

  • Mindell, D. P., and R. L. Honeycutt, 1990. Ribosomal RNA evolution in vertebrates: evolution and phylogenetic applications. Annual Review of Ecology and Systematics 21:541–566.

    Article  Google Scholar 

  • Mindell, D. P., and C. E. Thacker. 1996. Rates of molecular evolution: phylogenetic issues and applications. Annual Review of Ecology and Systematics 27:279–303.

    Article  Google Scholar 

  • Mitchison, G., and R. Durbin. 1995. Tree-based maximal likelihood substitution matrices and hidden Markov models. Journal of Molecular Evolution 41:1139–1151.

    Article  CAS  Google Scholar 

  • Muse, S. V., and B. S. Gaut. 1994. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Molecular Biology and Evolution 11:715–724.

    PubMed  CAS  Google Scholar 

  • Muse, S. V., and B. S. Weir. 1992. Testing for equality of evolutionary rates. Genetics 132:269–276.

    PubMed  CAS  Google Scholar 

  • Nadler, S. A. 1992. Phlogeny of some Ascaridoid nematodes, inferred from comparison of 18S and 28S rRNA sequences. Molecular Biology and Evolution 9:932–944.

    PubMed  CAS  Google Scholar 

  • Navidi, W. C., G. A. Churchill, and A. von Haeseler. 1991. Methods for inferring phylogenies from nucleic acid sequence data by using maximum likelihood and linear invariants. Molecular Biology and Evolution 3:418–426.

    Google Scholar 

  • Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nickrent, D., and E. M. Starr. 1994. High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants. Journal of Molecular Evolution 39:62–70.

    Article  PubMed  CAS  Google Scholar 

  • Palumbi, S. R. 1989. Rates of molecular evolution and the function of nucleotide positions free to vary. Journal of Molecular Evolution 29:180–187.

    Article  PubMed  CAS  Google Scholar 

  • Penny, D., M. D. Hendy, and M. A. Steel. 1992. Progress with methods for constructing evolutionary trees. Trends in Ecology and Evolution 7:73–79.

    Article  PubMed  CAS  Google Scholar 

  • Rabiner, L. R. 1989. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the Institute of Electrical and Electronics Engineers 77:257–286.

    Google Scholar 

  • Ramshaw, J. A. M., D. L. Richardson, B. T. Meatyard, R. H. Brown, M. Richardson, E. W. Thompson, and D. Boulter. 1972. The time of origin of the flowering plants determined by using amino acid sequence data of cytochrome c. New Phytologist 71:773–779.

    Article  CAS  Google Scholar 

  • Rodriguez, F., J. L. Oliver, A. Marin, and J. R. Medina. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142:485–501.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, M. J. 1997. A nonparametric approach to estimating divergence times in the absence of rate constancy. Molecular Biology and Evolution 14:1218–1231.

    Article  CAS  Google Scholar 

  • Sarich, V., and A. C. Wilson. 1967. Rates of albumin evolution in primates. Proceedings of the National Academy of Sciences U.S.A. 58:142–148.

    Article  CAS  Google Scholar 

  • Savard, L., P. Li, S. H. Strauss, M. W. Chase, M. Michaud, and J. Bousquet. 1994. Chloroplast and nuclear gene sequences indicate Late Pennsylvanian time for the last common ancestor of extant seed plants. Proceedings of the National Academy of Sciences U.S.A. 91:5163–5167.

    Article  CAS  Google Scholar 

  • Simpson, G. G. 1944 [reprinted 1984]. Tempo and Mode in Evolution. Columbia University Press, New York.

    Google Scholar 

  • Springer, M. 1995. Molecular clocks and the incompleteness of the fossil record. Journal of Molecular Evolution 41:531–538.

    Article  CAS  Google Scholar 

  • Stanley, S. M. 1979. Macroevolution. W. H. Freeman & Company, San Francisco.

    Google Scholar 

  • Steel, M., A. Cooper, and D. Penny. 1996. Estimating the time to divergence for groups of taxa. Systematic Biology 45:127–134.

    Article  Google Scholar 

  • Swofford. D. L., G. K. Olsen, P. J. Waddell, and D. M Hillis. 1996. Phylogeny reconstruction. In Molecular Systematics, second edition, eds. D. M. Hillis, C. Moritz, and B. K. Mable, pp. 407–514. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Tajima, F. 1993. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607.

    PubMed  CAS  Google Scholar 

  • Takahata, N. 1991. Statistical models of the overdispersed molecular clock. Theoretical and Population Biology 39:329–344.

    Article  CAS  Google Scholar 

  • Takezaki, N., A. Rzhetsky, and M. Nei. 1995. Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution 12:823–833.

    PubMed  CAS  Google Scholar 

  • Uyenoyama, M. K. 1995. A generalized least-squares estimate for the origin of sporophytic self-incompatibility. Genetics 139:975–992.

    PubMed  CAS  Google Scholar 

  • Walker, T. D. 1985. Diversification functions and the rate of taxonomic evolution. In Phanerozoic Diversity Patterns, ed. J. W. Valentine, pp. 311–334. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Weiss, G., and A. von Haeseler. 1996. Estimating the age of the common ancestor of men from the ZFY intron. Science 272:1359–1360.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, M. A., B. Gaut, and M. T. Clegg. 1990. Chloroplast DNA evolves slowly in the Palm family (Arecaceae). Molecular Biology and Evolution 7:303–314.

    PubMed  CAS  Google Scholar 

  • Wolfe, K. H., W.-H. Li, and P. M. Sharp. 1987. Rates of nucleotide substitution vary greatly among plant mitochondria, chloroplast, and nuclear DNAs. Proceedingsof the National Academy of Sciences U.S.A. 84:9054–9058.

    Article  CAS  Google Scholar 

  • Wray, G. A., J. S. Levinton, and L. H. Shapiro. 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274:568–573.

    Article  CAS  Google Scholar 

  • Wu, C.-L, and W-H. Li. 1985. Evidence for higher rates of nucleotide substitution in rodents than in man. Proceedings of the National Academy of Sciences U.S.A. 82:1741–1745.

    Article  CAS  Google Scholar 

  • Yang, Z. 1995. Phylogenetic analysis by maximum likelihood (PAML), version 1.1. Institute of Molecular Genetics, Pennsylvania State University, University Park.

    Google Scholar 

  • Yang, Z. 1996. Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology and Evolution 11:367–372.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., N. Goldman, and A. Friday. 1994. Comparison of models for nucleotide substitution used in maximumlikelihood phylogenetic estimation. Molecular Biology and Evolution 11:316–324.

    PubMed  CAS  Google Scholar 

  • Zuckerlandl, E., and L. Pauling. 1962. Molecular disease, evolution, and genetic heterogeneity. In Horizons in Biochemistry, eds. M. Kasha and B. Pullman, pp. 189–225. Academic Press, New York.

    Google Scholar 

  • Zuckerkandl, E., and L. Pauling. 1965. Evolutionary divergence and convergence. In Evolving Genes and Proteins, eds. V. Bryson and H. J. Vogel, pp. 97–166. Academic Press, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sanderson, M.J. (1998). Estimating Rate and Time in Molecular Phylogenies: Beyond the Molecular Clock?. In: Soltis, D.E., Soltis, P.S., Doyle, J.J. (eds) Molecular Systematics of Plants II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5419-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5419-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-11131-0

  • Online ISBN: 978-1-4615-5419-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics