Skip to main content

Evolutionarily Stable Configurations: Functional Integration and the Evolution of Phenotypic Stability

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 31))

Abstract

Phenotypic evolution has been studied since Darwin established the fact of evolution. In contrast, molecular evolution has been a subject of study since the mid-1960s. Nevertheless, our understanding of the mechanisms of phenotypic evolution is far less developed than our knowledge of molecular evolution. This fact is often attributed to the greater “complexity” of phenotypic characters, although it is not always clear what complexity means. More specifically, there are two features of phenotypic evolution that make molecular and phenotypic evolution quite distinct problems. First, molecular evolution is a continuing process, often occurring over long periods of time at a nearly constant rate, even if there are variations in rate among lineages. In contrast, phenotypic evolution is perceived as a highly irregular process with long periods of stasis interrupted by short bursts of change (Gould and Eldredge, 1977; Kimura, 1983). Second, most phenotypic characters comprise many levels of organization from the molecular to the behavioral and the population level, and the rate of change is nonuniform across these levels of organization. Some attributes of the phenotype, such as color and size, vary widely and evolve rapidly whereas other aspects of the phenotype, such as mode of food acquisition, are remarkably stable. Furthermore, even the conservative elements of the phenotype are not immutable because they have evolved in ancestral lineages and may become variable in a descendant lineage. Molecular evolution, on the other hand, pertains to evolutionary change on only one level of organization.

authorship equally shared

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-ghalyun, Y. L., Greenwald, L., Hetherington, T. E., and Gaunt, A. S., 1988, The physiological basis of slow locomotion in chameleons, J. Exp. Zool. 245:225–231.

    Article  PubMed  CAS  Google Scholar 

  • Alberch, P., 1982, Developmental constraints in evolutionary processes, in: Evolution and Development (J. T. Bonner, Ed.), pp. 313–332, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Allee, W. C., Park, O., Emerson, A. E., Park, T., and Schmidt, K. P., 1949, Principles of Animal Ecology, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Amundson, R., and Lauder, G. V., 1994, Function without purpose: The uses of causal role function in evolutionary biology, Biol. Philos. 9:443–469.

    Article  Google Scholar 

  • Antonovics, J., and V. Tienderen, P. H., 1991, Ontoecogenophyloconstraints? The chaos of constraint terminology, Trends in Ecol. Evol. 6:166–168.

    Article  CAS  Google Scholar 

  • Arthur, W., 1997, The Origin of Animal Body Plans,Cambridge Univ. Press, Cambridge.

    Book  Google Scholar 

  • Barel, C. D. N., 1993, Concepts of an architectonic approach to transformation morphology, Acta Biotheor. 41:345–381.

    Article  Google Scholar 

  • Bauer, A. M., 1992, Lizards, in: Reptiles and Amphibians (H. G. Cogger and R. G. Zweifel, Eds.), pp. 126–173, Smithmark, New York.

    Google Scholar 

  • Bell, D. A., 1990, Kinematics of prey capture in the chameleon, Zool. Jb. Physiol. 94:247–260.

    Google Scholar 

  • Bels, V. L., and Goose, V., 1989, A first report of relative movements within the hyoid apparatus during feeding in Anolis equestris (Reptilia: Iguanidae), Experientia 45:1088–1091.

    Article  Google Scholar 

  • Bels, V. L., Chardon, M., and Kardong, K. V., 1994, Biomechanics of the hyolingual system in Squamata, in: Biomechanics of Feeding in Vertebrates. Advances in Comparative & Environmental Physiology (V. L. Bels, M. Chardon and P. Vandewalle, Eds.), pp. 197–240, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Billo, R., and Wake, M. H., 1987, Tentacle development in Dermophis mexicanus (Amphibia, Gymnophiona) with an hypothesis of tentacle origin, J. Morph. 192:101–111.

    Article  Google Scholar 

  • Bock, W. J., 1963, Evolution and phylogeny in morphologically uniform groups, Amer. Nat. 97:265–285.

    Article  Google Scholar 

  • Bock, W. J., 1964, Kinetics of the avian skull, J. Morph. 114:1–41.

    Article  Google Scholar 

  • Bock, W. J., and von Wahlert, G., 1965, Adaptation and the form—function complex, Evolution 19:269–299.

    Article  Google Scholar 

  • Bramble, D. M., and Wake, D. B., 1985, Feeding mechanisms of lower tetrapods, in: Functional Vertebrate Morphology (M. Hildebrand, D. M. Bramble, K. F Liem and D. B. Wake, Eds.), pp. 230–261, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Burghardt, G. M., 1970, Chemical perception in reptiles, in: Communication by Chemical Signals (J. W. Johnston, D. G. Moulton and A. Turk, Eds.), pp. 241–308, AppletonCentury-Crofts, New York.

    Google Scholar 

  • Carroll, R. L., 1988, Vertebrate Paleontology and Evolution, W. H. Freeman, New York.

    Google Scholar 

  • Cooper, W. E., 1996, Preliminary reconstructions of nasal chemosensory evolution in Squamata. Amph.-Rept. 17:395–415.

    Article  Google Scholar 

  • Crandall, K. A., and Hillis, D M, 1997, Rhodopsin evolution in the dark, Nature 387:667–668.

    Article  PubMed  CAS  Google Scholar 

  • Cundall, D., 1995, Feeding behaviour in Cylindrophis and its bearing on the evolution of alethinophidian snakes, J. Zool. London 237:353–376.

    Article  Google Scholar 

  • Darwin, C., 1859, On the Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life, Murray, London.

    Google Scholar 

  • deBraga, M., and Rieppel, O., 1997, Reptile phylogeny and the interrelationships of turtles, Zool. J. Linn. Soc. 120:281–354.

    Article  Google Scholar 

  • Delheusy, V., and Bels, V. L., 1992, Kinematics of feeding behavior in Oplurus cuvieri (Reptilia: Iguanidae), J Exp. Biol. 179:155–186.

    Google Scholar 

  • Delheusy, V., Toubeau, G., and Bels, V. L., 1994, Tongue structure and function in Oplurus cuvieri (Reptilia: Iguanidae), Anat. Rec. 238:263–276.

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Uriarte, R., and Garland, J. T., 1996, Testing hypotheses of correlated evolution using phylogenetically independent contrasts: Sensitivity to deviations from Brownian motion, Syst. Biol. 45:27–47.

    Article  Google Scholar 

  • Dullemeijer, P., 1956, The functional morphology of the head of the common viper, Vipera berus (L.), Arch. Neerl. Zool. 11:386–497.

    Article  Google Scholar 

  • Dullemeijer, E, 1959, A comparative functional-anatomical study of the heads of some Viperidae, Morph. Jb. 99:881–985.

    Google Scholar 

  • Dullemeijer, P., 1974, Concepts and Approaches in Animal Morphology,Van Gorcum, Assen, The Netherlands.

    Google Scholar 

  • Dullemeijer, P., 1980, Functional morphology and evolutionary biology, Acta Biotheoretica 29:151–250.

    Article  PubMed  CAS  Google Scholar 

  • Dullemeijer, R, 1989, On the concept of integration in animal morphology, in: Trends in Vertebrate Morphology (H. Splechtna and H. Hilgers, Eds.), pp. 3–18, Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Emerson, A. E., 1949, Adaptation, in: Principles of Animal Ecology (by W. C. Allee, O. Park, A. E. Emerson, T. Park and K. P. Schmidt), pp. 630–690, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Estes, R., 1983, The fossil record and early distribution of lizards, in: Advances in Herpetology and Evolutionary Biology (A. G. J. Rhodin and K. Miyata, Eds.), pp. 365–398, Museum of Comparative Zoology, Cambridge, MA.

    Google Scholar 

  • Estes, R., de Queiroz, K., and Gauthier, J.,1988, Phylogenetic relationships within Squamata, in: Phylogenetic Relationships of the Lizard Families (R. Estes and G. Pregill, Eds.), pp. 119–281, Stanford University Press, Stanford, CA.

    Google Scholar 

  • Felsenstein, J., 1985, Phylogenies and the comparative method, Amer. Nat. 125:1–15.

    Article  Google Scholar 

  • Frazzetta, T. H., 1986, The origin of amphikinesis in lizards, Evol. Biol. 20:419–461.

    Article  Google Scholar 

  • Galis, E, 1992, A model for biting in the pharyngeal jaws of a cichlid fish: Haplochromis piceatus, J. Theor. Biol. 155:343–368.

    Article  Google Scholar 

  • Galis, E, 1996, The application of functional morphology to evolutionary studies, Tr. Ecol. Evol. 11:124–129.

    Article  CAS  Google Scholar 

  • Galls, E, personal communication.

    Google Scholar 

  • Galis, F., and Drucker, E. G., 1996, Pharyngeal biting mechanics in centrarchid and cichlid fishes: Insights into a key evolutionary innovation, J. Evol. Biol. 9:641–670.

    Article  Google Scholar 

  • Gans, C., 1969a, Comments on inertial feeding, Copeia 1969:855–857.

    Article  Google Scholar 

  • Gans, C., 1969b, Functional components versus mechanical units in descriptive morphology, J. Morph. 128:365–368.

    Article  Google Scholar 

  • Garland, T., Jr., 1992, Rate tests for phenotypic evolution using phylogenetically independent contrasts, Am. Nat. 140:509–519.

    Article  PubMed  Google Scholar 

  • Garland, T., Jr., Harvey, P. H., and Ives, A. R., 1992, Procedures for the analysis of comparative data using phylogenetically independent contrasts, Syst. Biol. 41:18–32.

    Google Scholar 

  • Gatesy, S. M., and Dial, K. P., 1996, Locomotor modules and the evolution of avian flight, Evolution 50:331–340.

    Article  Google Scholar 

  • Gauthier, J., Estes, R., and de Queiroz, K., 1988, A phylogenetic analysis of Lepidosauromorpha, in: Phylogenetic Relationships of the Lizard Families (R. Estes and G. Pregill, Eds.), pp. 15–98, Stanford University Press, Stanford, CA.

    Google Scholar 

  • Gerhart, J., and Kirschner, M., 1997, Cells, Embryos and Evolution, Blackwell Science, Malden, MA.

    Google Scholar 

  • Goodrich, E. S., 1906, Notes on the development, structure and origin of the median and paired fins of fish, Quart. J. Microsc. Sci. 50:333–376.

    Google Scholar 

  • Goodrich, E. S., 1913, Metameric segmentation and homology, Quart. J. Microsc. Sci. 59:227.

    Google Scholar 

  • Goose, V., and Bels, V. L., 1992, Kinematic and functional analysis of feeding behavior in Lacerta viridis (Reptilia: Lacertidae), Zool. Jb. Anat. 122:187–202.

    Google Scholar 

  • Gorniak, G. C., Rosenberg, H. I., and Gans, C., 1982, Mastication in the tuatara Sphenodon punctatus (Reptilia: Rhynchocephalia): Structure and activity of the motor system, J. Morph. 171:321–353.

    Article  Google Scholar 

  • Gould, S. J., and Eldredge, N., 1977, Punctuated equilibria: The tempo and mode of evolution reconsidered, Paleobiology 3:115–151.

    Google Scholar 

  • Graham, J. B., 1997, Air Breathing Fishes: Evolution, Diversity, and Adaptation,Academic Press, San Diego, CA.

    Google Scholar 

  • Greene, H. W., 1982, Dietary and phenotypic diversity in lizards: Why are some organisms specialized? in: Environmental Adaptation and Evolution (D. Mossakowski and G. Roth, Eds.), pp. 107–128, Gustav Fischer, Stuttgart.

    Google Scholar 

  • Greer, A. E., 1989, The Biology and Evolution of Australian Lizards, Surrey Beatty and Sons, Chipping Norton, Australia.

    Google Scholar 

  • Hall, B. K., 1992, Evolutionary Developmental Biology, Chapman and Hall, London.

    Google Scholar 

  • Hall, B. K., 1996, Baupläne, phylotypic stages and constraint. Why there are so few types of animals, in: Evolutionary Biology, Vol. 29 (M. K. Hecht, R. J. Maclntyre and M. T. Clegg, Eds.), pp. 215–261, Plenum Press, New York.

    Google Scholar 

  • Halpern, M., 1992, Nasal chemical senses in reptiles: Structure and function, in: Biology of the Reptilia,Vol. 18 (C. Gans and D. Crews, Eds.), pp. 423–523, University of Chicago Press, Chicago.

    Google Scholar 

  • Hansen, T. F., and Martins, E. P., 1996, Translating between microevolutionary process and macroevolutionary patterns: The correlation structure of interspecific data, Evolution 50:1404–1417.

    Article  Google Scholar 

  • Harvey, P. H., and Pagel, A. D., 1991, The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford.

    Google Scholar 

  • Hennig, W., 1966, Phylogenetic Systematics,University of Illinois Press, Urbana.

    Google Scholar 

  • Herrel, A., Cleuren, J., and DeVree, E, 1995, Prey capture in the lizard Agama stellio, J. Morph. 224:313–329.

    Article  Google Scholar 

  • Hiiemae, K. M., and Crompton, A. W, 1985, Mastication, food transport, and swallowing, in: Functional Vertebrate Morphology (M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake, Eds.), pp. 262–290, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Holsinger, K., personal communication.

    Google Scholar 

  • Hughes, A. L., 1994, The evolution of functionally novel proteins after gene duplication, Proc. R. Soc. Lond. B 256:119–124.

    Article  CAS  Google Scholar 

  • Jaksic, F. M., and Schwenk, K.,1983, Natural history observations on Liolaemus magellanicus, the southernmost lizard in the world, Herpetologica 39:457–461.

    Google Scholar 

  • Jaksic, E M., Fuentes, E. R., and Yanez, J. L., 1979, Two types of adaptation of vertebrate predators to their prey, Arch. Biol. Med. Exper. 12:143–152.

    Google Scholar 

  • Jones, T., 1995, Evolutionary Algorithms, Fitness Landscapes and Search,PhD Dissertation, University of New Mexico., Albuquerque, NM.

    Google Scholar 

  • Kimura, M., 1983, The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Kley, N. J., and Brainerd, E. L., 1996, Internal concertina swallowing: A critical component of alethinophidian feeding systems, Amer. Zool. 36:81A.

    Google Scholar 

  • Klingenberg, C. R, and Nijhout, H. F, 1998, Competition among growing organs and developmental control of morphological asymmetry, Proc. R. Soc. Lond. B 265:1135–1139.

    Article  Google Scholar 

  • Kraklau, D. M., 1991, Kinematics of prey capture and chewing in the lizard Agama agama (Squamata: Agamidae), J. Morph. 210:195–212.

    Article  Google Scholar 

  • Lauder, G. V., and Liem, K. F., 1989, The role of historical factors in the evolution of complex organismal functions, in: Complex Organismal Functions: Integration and Evolution in Vertebrates (D. B. Wake and G. Roth, Eds.), pp. 63–78, John Wiley and Sons, New York.

    Google Scholar 

  • Lee, M. S. Y., 1997, Reptile relationships turn turtles, Nature 389:245–246.

    Article  CAS  Google Scholar 

  • Liem, K. F., 1988, Form and function of lungs: The evolution of air breathing mechanisms, Amer. Zool. 28:739–759.

    Google Scholar 

  • Losos, J. B., and Greene, H. W, 1988, Ecological and evolutionary implications of diet in monitor lizards, Biol. J. Linn. Soc. 35:379–407.

    Article  Google Scholar 

  • Macey, J. R., Larson, A., Ananheva, N. B., and Papenfuss, T. J., 1997, Evolutionary shifts in three major structural features of the mitochondrial genome among iguanian lizards, J. Mol. Evol. 44:660–674.

    Article  PubMed  CAS  Google Scholar 

  • Maddison, W. R, and Maddison, D. R., 1992, MacClade version 3. Analysis of Phylogeny and Character Evolution, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Martins, E. P., 1996a, Conducting phylogenetic comparative studies when phylogeny is not known, Evolution 50:12–22.

    Article  Google Scholar 

  • Martins, E. P., 1996b, Phylogenies and the Comparative Method in Animal Behavior,Oxford University Press, Oxford.

    Google Scholar 

  • Martins, E. P., and Hansen, T. F., 1997, Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data, Amer. Nat. 149:646–667.

    Article  Google Scholar 

  • Mason, R. T., 1992, Reptilian pheromones, in: Hormones, Brain and Behavior. Biology of the Reptilia, Vol. 18 (C. Gans and D. Crews, Eds.), pp. 114–228, University of Chicago Press, Chicago.

    Google Scholar 

  • Maynard-Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L., 1985, Developmental constraints and evolution, Quart. Rev. Biol. 60:265–287.

    Article  Google Scholar 

  • McKitrick, M. C., 1993, Phylogenetic constraint in evolutionary theory: Has it any explanatory power? Anu. Rev. Ecol. Syst. 24:307–330.

    Article  Google Scholar 

  • Millikan, R. G., 1984, Language, Thought, and Other Biological Categories. MIT Press, Cambridge, MA.

    Google Scholar 

  • Minelli, A., and Peruffo, B., 1991, Developmental pathways, homology and homonomy in metameric animals, J. Evol. Biol. 4:429–445.

    Article  Google Scholar 

  • Müller, G. B., and Wagner, G. P., 1991, Novelty in evolution: Restructuring the concept, Annu. Rev. Ecol. Syst. 22:229–256.

    Article  Google Scholar 

  • Nijhout, H. E, and Emlen, D. J., 1998, Competition among parts in the development and evolution of insect morphology, Proc. Natl. Acad. Sci. USA 95:3685–3689.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, M. A., Boerlijst, M. C., Cooke, J., and Maynard Smith, J., 1997, Evolution of genetic redundancy, Nature 388:167–171.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., 1970, Evolution by Gene Duplication, Springer-Verlag, New York.

    Google Scholar 

  • O’Reilly, J. C., Nussbaum, R. A., and Boone, D., 1996, Vertebrate with protrusible eyes, Nature 382:33.

    Article  Google Scholar 

  • Pianka, E. R., 1986, Ecology and Natural History of Desert Lizards, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Pigliucci, M., Schlichting, C. D., Jones, C. S., and Schwenk, K., 1996, Developmental reaction norms: The interactions among allometry, ontogeny and plasticity, Plant Species Biol. 11:69–85.

    Article  Google Scholar 

  • Pough, F. H., 1973, Lizard energetics and diet, Ecology 54:837–844.

    Article  Google Scholar 

  • Riedl, R., 1978, Order in Living Organisms: A Systems Analysis of Evolution,John Wiley & Sons, New York.

    Google Scholar 

  • Rieppel, O., and deBraga, M., 1997, Turtles as diapsid reptiles, Nature 384:453–455.

    Article  Google Scholar 

  • Rollo, C. D., 1995, Phenotypes, Chapman and Hall, London.

    Google Scholar 

  • Rose, M. R., and Lauder, G. V., 1996, Adaptation, Academic Press, San Diego.

    Google Scholar 

  • Roth, G., and Wake, D. B., 1985, Trends in the functional morphology and sensorimotor control of feeding behavior in salamanders: An example of the role of internal dynamics in evolution, Acta Biotheoretica 34:175–192.

    Article  PubMed  CAS  Google Scholar 

  • Roth, G., and Wake, D. B., 1989, Conservatism and innovation in the evolution of feeding in vertebrates, in: Complex Organismal Functions: Integration and Evolution in Vertebrates (D. B. Wake and G. Roth, Eds.), pp. 7–21, John Wiley & Sons, New York.

    Google Scholar 

  • Roux, W., 1881, Kampf der Theile im Organismus, Jena, Leipzig.

    Google Scholar 

  • Rowe, T., 1996, Coevolution of the mammalian middle ear and neocortex, Science 273:651–654.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, M. J., and Donoghue, M. J., 1989, Patterns of variation in levels of homoplasy, Evolution 43:1781–1795.

    Article  Google Scholar 

  • Schaefer, S. A., and Lauder, G. V., 1996, Testing historical hypotheses of morphological change: Biomechanical decoupling in loricarioid catfishes, Evolution 50:1661–1675.

    Article  Google Scholar 

  • Schlichting, C. D., and Pigliucci, M., 1998, Phenotypic Evolution: A Reaction Norm Perspective, Sinauer Assoc., Sunderland, MA.

    Google Scholar 

  • Schmalhausen (Shmai’gauzen), I. I., 1949, Factors of Evolution. The Theory of Stabilizing Selection, Blakiston Co., Philadelphia.

    Google Scholar 

  • Schwenk, K., 1986, Morphology of the tongue in the tuatara, Sphenodon punctatus (Reptilia: Lepidosauria), with comments on function and phylogeny, J. Morph. 188:129–156.

    Article  Google Scholar 

  • Schwenk, K., 1988, Comparative morphology of the lepidosaur tongue and its relevance to squamate phylogeny, in: Phylogenetic Relationships of the Lizard Families (R. Estes and G. Pregill, Eds.), pp. 569–598, Stanford University Press, Stanford, CA.

    Google Scholar 

  • Schwenk, K., 1993, The evolution of chemoreception in squamate reptiles: A phylogenetic approach, Brain Behay. Evol. 41:124–137.

    Article  CAS  Google Scholar 

  • Schwenk, K., 1994a, Comparative biology and the importance of cladistic classification: A case study from the sensory biology of squamate reptiles, Biol. J. Linn. Soc. 52:69–82.

    Article  Google Scholar 

  • Schwenk, K., 1994b, Systematics and subjectivity: The phylogeny and classification of iguanian lizards reconsidered, Herp. Rev. 25:53–57.

    Google Scholar 

  • Schwenk, K., 1994c, Why snakes have forked tongues, Science 263:1573–1577.

    Article  CAS  Google Scholar 

  • Schwenk, K., 1995b, Of tongues and noses: Chemoreception in lizards and snakes, Trends Ecol. Evol. 10:7–12.

    Article  CAS  Google Scholar 

  • Schwenk, K., 1995a, A utilitarian approach to evolutionary constraint, Zoology 98:251–262.

    Google Scholar 

  • Schwenk, K., 1996, Why snakes flick their tongues, Amer. Zool. 36:84A.

    Google Scholar 

  • Schwenk, K., in press, Feeding in lepidosaurs, in: Feeding in Tetrapod Vertebrates: Form, Function, Phylogeny (K Schwenk, Ed.), Academic Press, San Diego.

    Google Scholar 

  • Schwenk, K., and Bell, D. A., 1988, A cryptic intermediate in the evolution of chameleon tongue projection, Experientia 44:697–700.

    Article  PubMed  CAS  Google Scholar 

  • Schwenk, K., and Throckmorton, G. S., 1989, Functional and evolutionary morphology of lingual feeding in squamate reptiles: Phylogenetics and kinematics, J. Zool., Lond. 219:153–175.

    Article  Google Scholar 

  • Schwenk, K., and Wanger, G P., in preparation, The reconciliation of selection and constraint.

    Google Scholar 

  • Simpson, G. G. 1953, The Major Features of Evolution, Columbia Univ. Press, New York.

    Google Scholar 

  • Sinnott, E. W, 1946, Substance or system: The riddle of morphogenesis, Amer. Nat. 80:497–505.

    Article  CAS  Google Scholar 

  • Smith, K. K., 1984, The use of the tongue and hyoid apparatus during feeding in lizards (Ctenosaura similis and Tupinambis nigropunctatus), J. Zool., Lond. 202:115–143.

    Article  Google Scholar 

  • Smith, K. K., 1986, Morphology and function of the tongue and hyoid apparatus in Varanus (Varanidae, Lacertilia), J. Morph. 187:261–287.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K. K., 1988, Form and function of the tongue, in agamid lizards with comments on its phylogenetic significance, J. Morph. 196:157–171.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K. K., and Mackay, K. A., 1990, The morphology of the intrinsic tongue musculature in snakes (Reptilia, Ophidia): Functional and phylogenetic implications, J. Morph. 205:307–324.

    Article  Google Scholar 

  • Stearns, S. C., 1993, The evolutionary links between fixed and variable traits, Acta Palaeon: Pol. 38:1–17.

    Google Scholar 

  • Throckmorton, G. S., 1980, The chewing cycle in the herbivourous lizard Uromastix aegyptius (Agamidae), Archs. Oral Biol. 25:225–233.

    Article  CAS  Google Scholar 

  • Urbani, J.-M., and Bels, V. L., 1995, Feeding behaviour in two scleroglossan lizards: Lacerta viridis (Lacertidae) and Zonosaurus laticaudatus (Cordylidae), J. Zool., Lond. 236: 265–290.

    Article  Google Scholar 

  • van der Klaauw, C. J., 1945, Cerebral skull and facial skull. A contribution to the knowledge of skull structure, Arch. Neerl. Zool. 7:16–37.

    Article  Google Scholar 

  • Vermeij, G., 1974, Adaptation, versatility and evolution, Syst.Zool. 22:466–477.

    Article  Google Scholar 

  • von Bertalanffy, L., 1952, Problems of Life. An Evaluation of Modern Biological Thought,Watts, London.

    Google Scholar 

  • Waddington, C. H., 1957, The Strategy of the Genes, MacMillan Co., New York.

    Google Scholar 

  • Wagner, G. P., 1986, The systems approach: An interface between development and population genetic aspects Of evolution, in: Patterns and Processes in the History of Life (D. M. Raup and D. Jablonski, Eds.), pp. 149–165, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Wagner, G. E, 1989, The origin of morphological characters and the biological basis of homology, Evolution 43:1157–1171.

    Article  Google Scholar 

  • Wagner, G. P., 1994, Homology and the mechanisms of development, in: Homology: The Hierarchical Basis of Comparative Biology (B. K. Hall, Ed.), pp. 273–299, Academic Press, San Diego.

    Google Scholar 

  • Wagner, G. P., in press, The Character Concept in Evolutionary Biology, Academic Press, San Diego.

    Google Scholar 

  • Wagner, G. P., and Altenberg, L., 1996, Complex adaptations and the evolution of evolvability, Evolution 50:967–976.

    Article  Google Scholar 

  • Wagner, G. P., Booth, G., and Bagheri-Chaichian, H., 1997, A population genetic theory of canalization, Evolution 51:329–347.

    Article  Google Scholar 

  • Wake, D. B., 1991, Homoplasy: The result of natural selection, or evidence of design limitations? Amer. Nat. 138:543–567.

    Article  Google Scholar 

  • Wake, M. H., 1985, The comparative morphology and evolution of the eyes of caecilians (Amphibia, Gymnophiona), Zoomorphology 105:277–295.

    Article  Google Scholar 

  • Wake, M. H., 1992, “Regressive” evolution of special sensory organs in caecilians (Amphibia: Gymnophiona): Opportunity for morphological innovation, Zool. Jb. Anat. 122:325–329.

    Google Scholar 

  • Wake, D. B., and Larson, A., 1987, Multidimensional analysis of an evolving lineage, Science 238:42–48.

    Article  PubMed  CAS  Google Scholar 

  • Wake, D. B., Roth, G., and Wake, M. H., 1983, On the problem of stasis in organismal evolution, J. Theor. Biol. 101:21–224.

    Article  Google Scholar 

  • Walker, W. E, Jr., and Liem, K. F, 1994, Functional Anatomy of the Vertebrates, Saunders, Philadelphia.

    Google Scholar 

  • Walls, G. L., 1942, The Vertebrate Eye and its Adaptive Radiation, Cranbrook Institute of Science, Bloomfield Hills, MI.

    Book  Google Scholar 

  • Weismann, A., 1896, On Germinal Selection as a Source of Definite Variation, 2nd ed. (English translation, Religious and Science Library, London, 1902).

    Google Scholar 

  • Weiss, K. M., 1990, Duplication with variation: Metameric logic in evolution from genes to morphology, Yearb. Phys. Anthropol. 33:1–23.

    Article  Google Scholar 

  • Whyte, L. L., 1965, Internal Factors in Evolution,George Braziller, New York.

    Google Scholar 

  • Wimsatt, W. C., and Schank, J. C., 1988, Two constraints on the evolution of complex adaptations and the means for their avoidance, in: Evolutionary Progress (M. Nitecki and K. Nitecki, Eds.), pp. 231–273, Univ. of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wagner, G.P., Schwenk, K. (2000). Evolutionarily Stable Configurations: Functional Integration and the Evolution of Phenotypic Stability. In: Hecht, M.K., Macintyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4185-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4185-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6877-9

  • Online ISBN: 978-1-4615-4185-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics