Skip to main content

Mapping the Redox State of CHOP-Treated Non-Hodgkin’s Lymphoma Xenografts in Mice

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XXXV

Abstract

Drug treatment may alter the metabolism of cancer cells and may alter the mitochondrial redox state. Using the redox scanner that collects the fluorescence signals from both the oxidized flavoproteins (Fp) and the reduced form of nicotinamide adenine dinucleotide (NADH) in snap-frozen tumor tissues, we investigated the effects of chemotherapy on mouse xenografts of a human diffuse large B-cell lymphoma cell line (DLCL2). The mice in the treatment group were treated with CHOP – cyclophosphamide (C) + hydroxydoxorubicin (H) + Oncovin (O) + prednisone (P) using the following regimen: CHO administration on day 1 followed by prednisone administration on day 1–5. On day 5 the mitochondrial redox state of the treated group was slightly more reduced than that of the control group (p = 0.049), and the Fp content of the treated group was significantly decreased (p = 0.033).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher RI, Gaynor ER, Dahlberg S et al (1993) Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N Engl J Med 328(14):1002–1006

    Article  CAS  Google Scholar 

  2. Mohammad RM, Al-Katib A, Aboukameel A, Doerge DR, Sarkar F (2003) Kucuk O Genistein sensitizes diffuse large cell lymphoma to CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy. Mol Cancer Ther 2(12):1361–1368

    CAS  PubMed  Google Scholar 

  3. Lee S-C, Huang MQ, Nelson DS et al (2008) In vivo MRS markers of response to CHOP chemotherapy in the WSU-DLCL2 human diffuse large B-cell lymphoma xenograft. NMR Biomed 21(7):723–733

    Article  CAS  Google Scholar 

  4. Li LZ, Zhou R, Xu HN et al (2009) Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential. Proc Natl Acad Sci USA 106(16):6608–6613

    Article  CAS  Google Scholar 

  5. Xu HN, Nioka S, Glickson JD et al (2010) Quantitative mitochondrial redox imaging of breast cancer metastatic potential. J Biomed Opt 15(3):036010

    Article  Google Scholar 

  6. Xu HN, Nioka S, Chance B, Li LZ (2011) Heterogeneity of mitochondrial redox state in premalignant pancreas in a PTEN null transgenic mouse model. Adv Exp Med Biol 701:207–213

    Article  CAS  Google Scholar 

  7. Xu HN, Wu B, Nioka S, Chance B, Li ZL (2009) Quantitative redox scanning of tissue samples using a calibration procedure. J Innov Opt Health Sci 2:375–385

    Article  Google Scholar 

  8. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9(6):447–464

    Article  CAS  Google Scholar 

  9. D'Souza GG, Wagle MA, Saxena V, Shah A (2011) Approaches for targeting mitochondria in cancer therapy. Biochim Biophys Acta 1807(6):689–696

    Article  CAS  Google Scholar 

  10. Andre N, Braguer D, Brasseur G et al (2000) Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells. Cancer Res 60(19):5349–5353

    CAS  PubMed  Google Scholar 

  11. Kuznetsov AV, Margreiter R, Amberger A, Saks V, Grimm M (2011) Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim Biophys Acta 1813(6):1144–1152

    Article  CAS  Google Scholar 

  12. Lobert S, Vulevic B, Correia JJ (1996) Interaction of vinca alkaloids with tubulin: a comparison of vinblastine, vincristine, and vinorelbine. Biochemistry 35(21):6806–6814

    Article  CAS  Google Scholar 

  13. Owellen RJ, Hartke CA, Dickerson RM, Hains FO (1976) Inhibition of tubulin-microtubule polymerization by drugs of the Vinca alkaloid class. Cancer Res 36(4):1499–1502

    CAS  PubMed  Google Scholar 

  14. Owellen RJ, Owens AH Jr, Donigian DW (1972) The binding of vincristine, vinblastine and colchicine to tubulin. Biochem Biophys Res Commun 47(4):685–691

    Article  CAS  Google Scholar 

  15. Carre M, Andre N, Carles G et al (2002) Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem 277(37):33664–33669

    Article  CAS  Google Scholar 

  16. Ranji M, Jaggard DL, Chance B (2006) Observation of mitochondrial morphology and biochemistry changes undergoing apoptosis by angularly resolved light scattering and cryoimaging. Biophotonics and immune responses. Proc SPIE 6087:60870K

    Article  Google Scholar 

  17. Chance B, Baltscheffsky H (1958) Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced pyridine nucleotide. J Biol Chem 233(3):736–739

    CAS  PubMed  Google Scholar 

  18. Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176(4475):250–254

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to Dr. Huaqing Zhao for valuable discussions about statistical analysis. This work was supported by the Center of Magnetic Resonance and Optical Imaging (CMROI) – an NIH-supported research resource P41RR02305 (R. Reddy), the Small Animal Imaging Resources Program (SAIR) 2U24-CA083105 (J.D. Glickson & L. Chodosh), 2R01-CA101700 (J.D. Glickson), and NIH k99/R00-CA126187 (R. Choe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Z. Li .

Editor information

Editors and Affiliations

Additional information

This article is dedicated to the memory of late Dr. Britton Chance who participated in the study with extraordinary scientific enthusiasm at the age of 97.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Xu, H.N. et al. (2013). Mapping the Redox State of CHOP-Treated Non-Hodgkin’s Lymphoma Xenografts in Mice. In: Van Huffel, S., Naulaers, G., Caicedo, A., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXXV. Advances in Experimental Medicine and Biology, vol 789. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7411-1_33

Download citation

Publish with us

Policies and ethics