Skip to main content

Light Scattering from Cornea and Corneal Transparency

  • Chapter
Noninvasive Diagnostic Techniques in Ophthalmology

Abstract

Understanding the properties of the cornea that are essential to vision—its structural stability and transparency—is a long-standing endeavor that continues to intrigue a variety of researchers ranging from ophthalmologists to physicists.1–12 The transparency of a normal cornea results directly from the fact that the cornea does not absorb visible light, and the light that it scatters is minimal. The small amount of scattered light, however, carries information about the internal structural elements from which the light is scattered. Therefore measurements of this scattered light can be used to probe structures in fresh (unfixed) corneal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maurice DM. The structure and transparency of the corneal stroma. J Physiol (Lond) 1957;136:263–286.

    CAS  Google Scholar 

  2. Payrau P, Pouliquen Y, Faure J-P, Offret G. La Transparence de la Cornée, les Mécanismes de ses Altérations. Masson & Cie, Paris, 1967.

    Google Scholar 

  3. Hart RW, Farrell RA. Light scattering in the cornea. J Opt Soc Am 1969;59:766–774.

    Article  PubMed  CAS  Google Scholar 

  4. Smith JW. The transparency of the corneal stroma. Vis Res 1969;9:393–396.

    Article  Google Scholar 

  5. Cox JL, Farrel RA, Hart RW, et al. The transparency of the mammalian cornea. J Physiol (Lond) 1970;210:601–616.

    CAS  Google Scholar 

  6. Feuk T. On the tansparency of the stroma in the mammaliam cornea. IEEE Trans Biomed Eng 1970;BME-17:186–190.

    Article  Google Scholar 

  7. Benedek GB. The theory of transparency of the eye. Appl Optics 1971;10:459–473.

    Article  CAS  Google Scholar 

  8. Miller D, Benedek GB. Intraocular Light Scattering, Theory and Clinical Application. Charles C Thomas, Springfield, IL, 1973.

    Google Scholar 

  9. Twersky V. Transparency of pair-related, random distributions of small scatterers, with applications to the cornea. J Opt Soc Am 1975;65:524–530.

    Article  PubMed  CAS  Google Scholar 

  10. Farrell RA. McCally, RL. On corneal transparency and its loss with swelling. J Opt Soc Am 1975;66:342–345.

    Article  Google Scholar 

  11. Maurice DM. The cornea and sclera. In Davson H (ed): The Eye Vol. lb. Academic Press, Orlando, FL, 1984, pp. 1–158.

    Google Scholar 

  12. McCally RL, Farrell RA. Interaction of light and the cornea: light scattering versus transparency. In Cavanagh HD (ed): The Cornea. Transactions of the World Congress on the Cornea III. Raven Press, New York, 1988, pp. 165–171.

    Google Scholar 

  13. Goldman JN, Benedek GB, Dohlman CH. Structural alterations affecting transparency in swollen human corneas. Invest Ophthalmol 1968;7:501–519.

    PubMed  CAS  Google Scholar 

  14. Freund DE, McCally RL, Farrell RA. Effects of fibril orientations on light scattering in the cornea. J Opt Soc Am [A] 1986;3:1970–1982.

    Article  CAS  Google Scholar 

  15. Van de Hulst HC. Light Scattering by Small Particles. Dover Publications, New York, 1981, pp. 304–306.

    Google Scholar 

  16. Farrell RA, McCally RL, Tatham, PER. Wavelength dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications. J Physiol (Lond) 1973;233:589–612.

    CAS  Google Scholar 

  17. Helfand E, Frisch HL, Lebowitz JL, Theory of the two- and one-dimensional rigid sphere fluids. J Chem Pys 1961;34:1037–1042.

    Article  CAS  Google Scholar 

  18. Craig SA, Perry DAD. Collagen fibrils of the vertebrate corneal stroma. J Ultrastruct Res 1981;74:232–239.

    Article  PubMed  CAS  Google Scholar 

  19. Kanai A, Kaufman HE. Electron micrographic studies of swollen cornea stroma. Ann Ophthalmol 1973;5:285–287.

    PubMed  CAS  Google Scholar 

  20. Gallager B, Maurice DM. Striations of light scattering in the corneal stroma. J Ultrastruct Res 1977;61:100–114.

    Article  Google Scholar 

  21. McCally RL, Farrell RA. The depth dependence of light scattering from the normal rabbit cornea. Exp Eye Res 1976;23:69–81.

    Article  PubMed  CAS  Google Scholar 

  22. McCally RL, Farrell RA. Effect of transcorneal pressure on small-angle light scattering from rabbit cornea. Polymer 1977;18:444–448.

    Article  CAS  Google Scholar 

  23. McCally RL, Farrell RA. Structural implications of small-angle light scattering from cornea. Exp Eye Res 1982;34:99–111.

    Article  PubMed  CAS  Google Scholar 

  24. Lindström, JI, Feuk T, Tengroth B. The distribution of light scattered from the rabbit cornea. Acta Ophthalmol (Copenh) 1973;51:656–669.

    Article  Google Scholar 

  25. Maurice DM. A scanning slit optical microscope. Invest Ophthalmol 1974;13:1033–1037.

    PubMed  CAS  Google Scholar 

  26. Farrell RA, McCally RL. On the interpretation of depth dependent light scattering measurements in normal rabbit corneas. Acta Ophthalmol (Copenh) 1976;54:261–270.

    Article  CAS  Google Scholar 

  27. Feuk T. The wavelength dependence of scattered light intensity in rabbit corneas. IEEE Trans Biomed Eng 1971;BME-18:92–96.

    Article  Google Scholar 

  28. Goodfellow JM, Elliott GF, Woolgar AE. X-ray diffraction studies of the corneal stroma. J Mol Biol 1978;199:237–252.

    Article  Google Scholar 

  29. Sayers Z, Koch MHJ, Whitburn SB, et al. Synchrotron x-ray diffraction study of corneal stroma. J Mol Biol 1982;160:593–607.

    Article  PubMed  CAS  Google Scholar 

  30. Elliott GF, Sayers Z, Timmons PA. Neutron diffraction studies of the corneal stroma. J Mol Biol 1982;155:389–393.

    Article  PubMed  CAS  Google Scholar 

  31. Stein RS. Optical methods of characterizing high polymers. In Bacon KE (ed): Newer Methods of Polymer Characterization. Interscience, New York, 1964, pp. 155–206.

    Google Scholar 

  32. Chein JCW. Solid state characterization of the structure and properties of collagen. J Macromol Sci Rev Macromol Chem 1975;C-12:1–80.

    Google Scholar 

  33. Kikkawa Y. Diffraction spectra produced by the rabbit cornea. Jpn J Physiol 1958;8:138–147.

    Article  PubMed  CAS  Google Scholar 

  34. Bettelheim FA, Kaplan D. Small angle light scattering of bovine cornea as affected by birefringence. Biochim Biophys Acta 1973;313:268–276.

    PubMed  CAS  Google Scholar 

  35. Bettelheim FA, Kumbar M. An interpretation small-angle light scattering patterns of human cornea. Invest Ophthalmol 1977;16:233–236.

    CAS  Google Scholar 

  36. Bettelheim FA, Magrill R. Small angle light scattering patterns of corneas of different species. Invest Ophthalmol 1977;16:236–240.

    CAS  Google Scholar 

  37. Chang EP, Keedy DA, Chein JCW. Ultrastructure of rabbit corneal stroma: mapping of optical and morphological anisotropics. Biochim Biophys Acta 1974;343:615–626.

    PubMed  CAS  Google Scholar 

  38. Maurice DM. The transparency of the corneal stroma. Vis Res 1970;10:107–108.

    Article  PubMed  CAS  Google Scholar 

  39. Andreo RH, Farrell RA. Corneal small-angle light scattering patterns: wavy fibril models. J Opt Soc Am 1982;72:1479–1492.

    Article  PubMed  CAS  Google Scholar 

  40. Stanworth A, Naylor EJ. The polarization optics of the isolated cornea. Br J Ophthalmol 1950;34:201–211.

    Article  PubMed  CAS  Google Scholar 

  41. Stanworth A, Naylor EJ. Polarized light studies of the cornea. I. The isolated cornea. J Exp Biol 1953;30:160–163.

    Google Scholar 

  42. Stanworth A, Naylor EJ. Polarized light studies of the cornea. II. The effect of intra-ocular pressure. J Exp Biol 1953;30:164–169.

    Google Scholar 

  43. Naylor EJ. Polarized light studies of corneal structure. Br J Ophthalmol 1953;37:77–84.

    Article  PubMed  CAS  Google Scholar 

  44. Mishima S. The use of polarized light biomicroscopy of the eye, report I. Adv Ophthalmol 1960;10:1–20.

    Google Scholar 

  45. Post D, Gurland JE. Birefringence of the cat cornea. Exp Eye Res 1966;5:286–295.

    Article  PubMed  CAS  Google Scholar 

  46. Kaplan D, Bettelheim FA. On the birefringence of bovine cornea. Exp Eye Res 1972;13:219–226.

    Article  PubMed  CAS  Google Scholar 

  47. Meek KM, Blamires T, Elliott GF, et al. The organization of collagen fibrils in human corneal stroma: a synchrotron x-ray diffraction study. Curr Eye Res 1987;6:841–846.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

McCally, R.L., Farrell, R.A. (1990). Light Scattering from Cornea and Corneal Transparency. In: Masters, B.R. (eds) Noninvasive Diagnostic Techniques in Ophthalmology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8896-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8896-8_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8898-2

  • Online ISBN: 978-1-4613-8896-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics