Skip to main content

Toxicity Bioassays for Ecological Risk Assessment in Arid and Semiarid Ecosystems

  • Chapter
Reviews of Environmental Contamination and Toxicology

Abstract

Ecological risk assessment (ERA) is a tool used to estimate adverse effects on the environment from chemical or physical stressors. ERA can evaluate historical releases or the potential impact of proposed facilities or new chemicals. This review considers ERA in the context of historical releases of chemical stressors in dry environments. Arid and semiarid ecosystems present special challenges for application of risk assessment tools. One key problem is that most toxicity bioassays have been developed for aquatic environments or mesic ecosystems. However, roughly one-third of the earth’s land area is characterized by dry conditions. In the United States, many large federal facilities are located in arid and semiarid environments. For example, a recent evaluation of ecological resources at major U.S. Department of Energy (USDOE) facilities showed that almost 90% of the land surveyed is characterized as arid and semiarid (McAllister et al. 1996). It is anticipated that ERA will be the main tool used by USDOE to make waste management and restoration decisions in these dry systems (McAllister et al. 1996).

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory (“Argonne”) under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Melillo JM (1991) Terrestrial Ecosystems. Saunders, Philadelphia, pp 173–193.

    Google Scholar 

  • Adema DMM, Henzen L (1989) Comparison of plant toxicities to some industrial chemicals in soil cultures and soiless cultures. Ecotoxicol Environ Saf 18:219–229.

    Article  PubMed  CAS  Google Scholar 

  • Anderson RV, Coleman DC, Cole CV, Elliot ET (1981) Effect of the nematodes Acrobeloides spp. and Mesodiplogaster iherithieri on substrate utilization and nitrogen and phosphorous mineralization in soil. Ecology 62:549–555.

    Article  CAS  Google Scholar 

  • ASTM (1994) Standard practice for conducting early seedling growth tests. E-1598–94. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • ASTM (1997) Standard guide for conducting laboratory soil toxicity or bioaccumulation tests with the lumbricid earthworm Eisenia fetida. E-1676–97. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • ASTM (1998) Standard guide for conducting terrestrial plant toxicity tests. E-1963–98. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • Bââth E, Frostegård Å, Díaz-Ravina M, Tunlid A (1998) Microbial community-based measurements to estimate heavy-metal effects in soil: the use of phospholipid fatty acid patterns and community tolerance. Ambio 27:58–61.

    Google Scholar 

  • Bardgett RD, Chan KF (1999) Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biol Biochem 31:1007–1014.

    Article  CAS  Google Scholar 

  • Bardgett RD, Speir T, Ross D, Yeates G, Kettles H (1994) Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biol Fertil Soils 18:71–79.

    Article  CAS  Google Scholar 

  • Baud-Grasset F, Baud-Grasset S, Safferman SI (1993) Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere 26:1365–1374.

    Article  CAS  Google Scholar 

  • Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423.

    Article  Google Scholar 

  • Bengtsson G, Rundgren S (1984) Ground-living invertebrates in metal-polluted forest soils. Ambio 13:29–33.

    CAS  Google Scholar 

  • Bengtsson G, Gunnarsson T, Rundgren S (1985) Influence of metals on reproduction, mortality and population growth in Onychiurus armatus (Collembola). J Appl Ecol 22:967–978.

    Article  CAS  Google Scholar 

  • Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10: 239–251.

    Article  Google Scholar 

  • Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228.

    Article  PubMed  Google Scholar 

  • Borror D, Triplehorn C, Johnson N (1989) An Introduction to the Study of Insects, 6th Ed. Saunders, Philadelphia, pp 445–446.

    Google Scholar 

  • Brown J, Davidson D, Reichman O (1979) Granivory in desert ecosystems. Annu Rev Ecol Syst 10:210–227.

    Article  Google Scholar 

  • Chen D (1993) Plant uptake and soil adsorption of RDX. M.S. thesis, University of Illinois, Champaign-Urbana, IL.

    Google Scholar 

  • Cheng W, Coleman D (1989) A simple method for measuring CO2 in a continuous airflow system: modifications to the substrate-induced respiration technique. Soil Biol Biochem 21:385–388.

    Article  Google Scholar 

  • Crawford C (1991) The community ecology of desert macroarthropod detritivores. In: Polis G (ed) The Ecology of Desert Communities. University of Arizona Press, Tucson, pp 89–112.

    Google Scholar 

  • Crommentuijn T, Brils J, Van Straalen NM (1993) Influence of cadmium on life-history characteristics of Folsomia candida (Willem) in an artificial soil substrate. Ecotoxicol Environ Saf 26:216–227.

    Article  PubMed  CAS  Google Scholar 

  • Crommentuijn T, Stäb JA, Doorenkamp A, Estoppy O, Van Gestel CAM (1995) Comparative ecotoxicology of cadmium, chlorpyrifos and triphenyltin hydroxide for four clones of the parthenogenetic collembolan Folsomia candida in an artificial soil. Funct Ecol 9:734–742.

    Article  Google Scholar 

  • Crouau Y, Chenon P, Gisclard C (1999) The use of Folsomia candida (Collembola, Isotomidae) for the bioassay of xenobiotic substances and soil pollutants. Appl Soil Ecol 12:103–111.

    Article  Google Scholar 

  • De Jong FMW (1998) Development of a field bioassay for the side effects of pesticides on decomposition. Ecotoxicol Environ Saf 40:103–114.

    Article  PubMed  Google Scholar 

  • Denneman CA J, Van Straalen NM (1991) The toxicity of lead and copper in reproduction tests using the orbatid mite Platynothrus peltifer. Pedobiologia 35:305–311.

    CAS  Google Scholar 

  • Doelman P (1985) Resistance of soil microbial communities to heavy metals. In: Jensen V, Kjöller A, Sörensen L (eds) Microbial Communities in Soil. Elsevier, New York, pp 369–383.

    Google Scholar 

  • Donkin SG, Dusenbery DB (1993) A soil toxicity test using the nematode Caenor-habditis elegans and an effective method of recovery. Arch Environ Contam Toxicol 25:145–151.

    Article  CAS  Google Scholar 

  • Dorn P, Vipond TE, Salantrio JP, Wisniewski HL (1998) Assessment of the acute toxicity of crude oils in soils using earthworms, Microtox® and plants. Chemosphere 37: 845–860.

    Article  CAS  Google Scholar 

  • Drobne D, Hopkin SP (1994) Ecotoxicological laboratory test for assessing the effects of chemicals on terrestrial isopods. Bull Environ Contam Toxicol 53:390–397.

    Article  PubMed  CAS  Google Scholar 

  • Efroymson RA, Will ME, Suter GW, Wooten AC (1997a) Toxicological benchmarks for screening contaminants of potential concern for effects on terrestrial plants: 1997 revision. ES/ER/TM-85/R3. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Efroymson RA, Will ME, Suter GW (1997b) Toxicological benchmarks for screening contaminants of potential concern for effects on soil and litter invertebrate and heterotrophic process: 1997 revision. ES/ER/TM-126/R2. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Efroymson RA, Suter GW (1999) Finding a niche for soil microbial toxicity tests in ecological risk assessment. Hum Ecol Risk Assess 5:715–728.

    CAS  Google Scholar 

  • Everts JW (1997) Ecotoxicology for risk assessment in arid zones: some key issues. Arch Environ Contam Toxicol 32:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Everts JW, Willemsen I, Stulp M, Simons L, Aukema B, Kammenga JE (1991) The toxic effect of deltamethrin on Linyphiid and Erigonid spiders in connection with ambient temperature, humidity and predation. Arch Environ Contam Toxicol 20: 20–24.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari B, Radetski CM, Veber AM, Ferard JF (1999) Ecotoxicological assessment of solid wastes: a combined liquid- and solid-phase testing approach using a battery of bioassays and biomarkers. Environ Toxicol Chem 18:1195–1202.

    CAS  Google Scholar 

  • Frampton BK (1998) The effects of some commonly used foliar fungicides on Collembola in winter barley: laboratory and field studies. Ann Appl Biol 113:1–14.

    Article  Google Scholar 

  • Franco PJ, Edney EB, McBrayer JF (1979) The distribution and abundance of soil arthropods in the Northern Mojave desert. J Arid Environ 2:137–149.

    Google Scholar 

  • Gibbs MH, Wicker LF, Stewart AJ (1996) A method for assessing the sublethal effects of contaminants in soils to the earthworm, Eisenia foetida. Environ Toxicol Chem 15:360–368.

    CAS  Google Scholar 

  • Gong P, Wilke B, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157.

    Article  PubMed  CAS  Google Scholar 

  • Grant WF (1994) The present status of higher plant bioassays for detection of environmental mutagens. Mutat Res 310:175–185.

    PubMed  CAS  Google Scholar 

  • Gunderson C, Kostuk J, Gibbs M, Napolitano G, Wicker L, Richmond J, Stewart A (1997) Multispecies toxicity assessment of compost produced in bioremediation of an explosives-contaminated sediment. Environ Toxicol Chem 16:2529–2537.

    Article  CAS  Google Scholar 

  • Gutterman Y (1993) Seed Germination in Desert Plants. Springer-Verlag, New York, pp 95–100.

    Book  Google Scholar 

  • Haverty MI, Nutting WL (1975) Density, dispersion, and composition of desert termite foraging populations and their relationship to superficial dead wood. Environ Entomol 4:480–486.

    Google Scholar 

  • Heath G, Edwards C, Arnold M (1964) Some methods for assessing the activity of soil animals in the breakdown of leaves. Pedobiologia 4:80–87.

    Google Scholar 

  • Heimbach U, Baloch AA (1994) Effects of three pesticides on Poecilus cupreus (Coleoptera: Carabidae) at different post-treatment temperatures. Environ Toxicol Chem 13:317–324.

    CAS  Google Scholar 

  • Heimbach U, Leonard P, Khoshab A, Miyakawa R, Abel C (1994) Assessment of pesticide safety to the carabid beetle, Poecilus cupreus, using two different semifield enclosures. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 273–285.

    Google Scholar 

  • Holmstrup M (1997) Drought tolerance in Folsomia candida Willem (Collembola) after exposure to sublethal concentrations of three soil-polluting chemicals. Pedobiologia 41:361–368.

    CAS  Google Scholar 

  • Hopkin SP (1990) Species-specific differences in the net assimilation of zinc, cadmium, lead, copper and iron by the terrestrial isopods Oniscus asellus and Porcellio scaber. J Appl Ecol 27:460–474.

    Article  Google Scholar 

  • Hopkin SP (1997) Biology of the Springtails (Insecta: Collembola), Oxford University Press, New York, pp 183–201.

    Google Scholar 

  • Hopkin S, Martin M (1985) Assimilation of zinc, cadmium, lead, copper and iron by the spider Dysdera crocata, a predator of woodlice. Bull Environ Contam Toxicol 34: 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Horning E, Farkas S, Fisher E (1998) Tests on the isopod Porcello scaber. In: Lokke H, Van Gestel CAM (eds) Handbook of Soil Invertebrate Toxicity Tests. Wiley, Chichester, pp 207–226.

    Google Scholar 

  • Houx NWH, Aben WJM (1993) Bioavailability of pollutants to soil organisms via the soil solution. Sci Total Environ 1:387–395.

    Google Scholar 

  • Huffman A, Jacoby P (1984) Effects of herbicides on germination and seedling development of three native grasses. J Range Manage 37:40–43.

    Article  CAS  Google Scholar 

  • Hull RN, Klee U, Bryant D, Copeland T (1999) Soil microbial communities and ecological risk assessment: risk assessors’ perspective. Hum Ecol Risk Assess 5:707–714.

    CAS  Google Scholar 

  • Inouye R (1991) Population biology of desert annual plants. In: Polis G (ed) The Ecology of Desert Communities. University of Arizona Press, Tucson, pp. 27–54.

    Google Scholar 

  • Kammenga JE, Van Gestel CAM, Bakker J (1994) Patterns of sensitivity to cadmium and pentachlorophenol among nematode species from different taxonomic and ecological groups. Arch Environ Contam Toxicol 27:88–94.

    Article  PubMed  CAS  Google Scholar 

  • Kammenga JE, Van Koert PHG, Riksen JAG, Korthals GW, Bakker J (1996) A toxicity test in artificial soil based on the life-history strategy of the nematode Plectus acumi-natus. Environ Toxicol Chem 15:722–727.

    CAS  Google Scholar 

  • Kaputska LA (1999) Microbial endpoints: the rationale for their exclusion as ecological assessment endpoints. Hum Ecol Risk Assess 5:691–696.

    Google Scholar 

  • Kapustka LA, Lipton J, Galbraith H, Cacela D, Lejeune K (1995) Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in southwest Montana uplands contaminated by smelter emissions: II. laboratory phytotoxicity studies. Environ Toxicol Chem 14:1905–1912.

    Article  CAS  Google Scholar 

  • Karr JR (1993) Defining and assessing ecological integrity: beyond water quality. Environ Toxicol Chem 12:1521–1531.

    Article  CAS  Google Scholar 

  • Karr JR, Chu EW (1997) Biological monitoring: essential foundation for ecological risk assessment. Hum Ecol Risk Assess 3:993–1004.

    Article  Google Scholar 

  • Kay FR, Sobhy HM, Whitford WG (1999) Soil microarthropods as indicators of exposure to environmental stress in Chihuahuan Desert rangelands. Biol Fertil Soils 28: 121–128.

    Article  Google Scholar 

  • Kennedy AC (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74: 65–76.

    Article  Google Scholar 

  • Knight W, Morgan J, Guenzi W, Shoop M (1993) Soil applied atrazine alters blue grama physiology and indirectly influences soil nitrogen. Agron J 85:1029–1035.

    Article  CAS  Google Scholar 

  • Kovalchuk O, Kovalchuk IAA, Telyuk P, Hohn B, Kovalchuk L (1998) The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in the Ukraine contaminated by the Chernobyl accident. Mutat Res 415:47–57.

    PubMed  CAS  Google Scholar 

  • Krogh PH (1995) Does a heterogeneous distribution of food or pesticide affect the outcome of toxicity tests with Collembola? Ecotoxicol Environ Saf 30:158–163.

    Article  PubMed  CAS  Google Scholar 

  • Krogh PH, Johansen K, Holmstrup M (1998) Automatic counting of collembolans for laboratory experiments. Appl Soil Ecol 7:201–205.

    Article  Google Scholar 

  • Kula H, Larink O (1997) Development and standardization of test methods for the prediction of sublethal effects of chemicals on earthworms. Soil Biol Biochem 29:635–639.

    Article  CAS  Google Scholar 

  • Kuperman R (1996) A hierarchical approach to ecological assessment of contaminated soils at Aberdeen Proving Ground, USA. In: Van Straalen NM, Krivolutsky DA (eds) Bioindicator Systems for Soil Pollution. Kluwer, New York, pp 197–212.

    Google Scholar 

  • Kuperman R, Carreiro MM (1997) Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol Biochem 29: 179–190.

    Article  CAS  Google Scholar 

  • Kuperman RG, Williams GP, Parmelee RW (1998) Spatial variability in the soil food-webs in a contaminated grassland ecosystem. Appl Soil Ecol 9:509–514.

    Article  Google Scholar 

  • Kwan KK, Dutka BJ (1992) Evaluation of Toxi-chromotest direct sedimentary toxicity testing procedure and Microtox solid-phase testing procedure. Bull Environ Contam Toxicol 49:656–662.

    Article  PubMed  CAS  Google Scholar 

  • LANL (1998) Environmental surveillance at Los Alamos during 1997. LA-133487-ENV. Los Alamos National Laboratory, Los Alamos, NM.

    Google Scholar 

  • Laskowski R, Kramarz P, Jepsón P (1998) Selection of species for soil ecotoxicity testing. In: Lokke H, Van Gestel CAM (eds) Handbook of Soil Invertebrate Toxicity Tests. Wiley, Chichester, pp 21–31.

    Google Scholar 

  • Lebrun P (1979) Soil mite community diversity. In: Rodriguez JG (ed) Recent Advances in Acarology. Academic Press, New York, pp 603–613.

    Google Scholar 

  • Linz DG, Nakles DV (1997) Environmentally Acceptable Endpoints in Soil: Risk-Based Approach to Contaminated Site Management Based on Availability of Chemicals in Soil. American Academy of Environmental Engineers, Annapolis, MD.

    Google Scholar 

  • Lobry de Bruyn LA (1999) Ants as bioindicators of soil function in rural environments. Agric Ecosyst Environ 74:425–441.

    Article  Google Scholar 

  • Loring S, Weems D, Whitford W (1988) Abundance and diversity of surface-active col-lembola along a watershed in the northern Chihuahuan Desert. Am Midl Nat 119: 21–30.

    Article  Google Scholar 

  • MacKay W (1991) The role of ants and termites in desert communities. In: Polis G (ed) The Ecology of Desert Communities. University of Arizona Press, Tucson, pp 113–150.

    Google Scholar 

  • Majer J (1983) Ants: bioindicators of minesite rehabilitation, land use and land conservation. Environ Manage 7:375–383.

    Article  Google Scholar 

  • Maltby L (1999) Studying stress: the importance of organism-level responses. Ecol Appl 9:431–440.

    Article  Google Scholar 

  • Markwiese J (1999) Microbial ecology of Fe(III)-reducing bacteria: heavy-metal mobilization, heavy-metal toxicity and hydrocarbon bioremediation. Ph.D. dissertation, University of Wyoming, Laramie.

    Google Scholar 

  • Markwiese J, Colberg P (2000) Bacterial reduction of copper-contaminated ferric oxide: Cu toxicity and the interaction between fermentative and Fe(III)-reducing bacteria. Arch Environ Contam Toxicol 38:139–146.

    Article  PubMed  CAS  Google Scholar 

  • Markwiese J, Colberg P, Meyer J (1998) Copper tolerance in iron reducing bacteria: implications for copper mobilization in aquatic sediments. Environ Toxicol Chem 17: 675–678.

    Article  CAS  Google Scholar 

  • Martikainen E, Krogh PH (1999) Effects of soil organic matter content and temperature on toxicity of dimethoate to Folsomia fimetaria (Collembola: Isotomiidae). Environ Toxicol Chem 18:865–872.

    CAS  Google Scholar 

  • Martikainen E, Rantalainen ML (1999) Temperature-time relationship in collembolan response to chemical exposure. Ecotoxicol Environ Saf 42:236–244.

    Article  PubMed  CAS  Google Scholar 

  • Marwood TM, Knoke K, Yau K, Trevors JT, Suchorski-Tremblay A, Flemming CA, Hodge V, Liu DL, Seech AG (1998) Comparison of toxicity detected by five bioassays during bioremediation of diesel fuel-spiked soils. Environ Toxicol Water Qual 13:117–126.

    Article  CAS  Google Scholar 

  • McAllister C, Beckert H, Abrams C, Bilyard G, Cadwell K, Friant S, Glantz C, Mazaika R, Miller K (1996) Survey of ecological resources at selected U.S. Department of Energy sites. DOE/EH-0534. U.S. Department of Energy, Washington, DC.

    Book  Google Scholar 

  • Menzie CA, Burmaster DE, Freshman JS, Calahan CA (1992) Assessment of methods for estimating ecological risk in the terrestrial component: a case study at the Baird & McGuire Superfund site in Holbrook, Massachusetts. Environ Toxicol Chem 11:245–260.

    Article  CAS  Google Scholar 

  • Menzie C, Henning MH, Cura J, Finklestein K, Gentile J, Muaghan J, Mitchell D, Petron S, Potocki B, Svirsky S, Tyler P (1996) Special report on the Massachusetts weight-of-evidence workgroup: a weight-of-evidence approach for evaluating ecological risk. Hum Ecol Risk Assess 2:277–304.

    Article  Google Scholar 

  • Miller WE, Peterson SA, Greene JC, Callahan CA (1985) Comparative toxicology of laboratory organisms for assessing hazardous waste sites. J Environ Qual 14:569–574.

    Article  CAS  Google Scholar 

  • Mooney H, Ehleringer J, Berry J (1976) High photosynthetic capacity of a winter annual in Death Valley. Science 194:322–324.

    Article  PubMed  CAS  Google Scholar 

  • Moore JC, DeRuiter PC (1993) Assessment of disturbance in soil ecosystems. Vet Parasitol 48:75–85.

    Article  PubMed  CAS  Google Scholar 

  • Morgan J, Knight W (1991) Growth and physiological responses of greenhouse-grown blue grama to atrazine. Agron J 83:677–683.

    Article  CAS  Google Scholar 

  • Neuhauser EF, Loehr RC, Milligam DL, Malecki MR (1985) Toxicity of metals to the earthworm Eisenia fetida. Biol Fertil Soils 1:149–152.

    Article  CAS  Google Scholar 

  • Paine JM, McKee MJ, Ryan ME (1993) Toxicity and bioaccumulation of PCBs in crickets: comparison of laboratory and field studies. Environ Toxicol Chem 12:2097–2103.

    Article  CAS  Google Scholar 

  • Paoletti MG, Hassall M (1999) Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agric Ecosyst Environ 74:157–165.

    Article  Google Scholar 

  • Paoletti MG, Favretto MR, Stinner BR, Purrington FF, Bater JE (1991) Invertebrates as bioindicators of soil use. Agric Ecosyst Environ 34:341–362.

    Article  Google Scholar 

  • Parker L, Santos P, Phillips J, Whitford W (1984) Carbon and nitrogen dynamics during the decomposition of litter and roots of a Chihuahuan desert annual, Lepidiwn lasiocarpum. Ecol Monogr 54:339–360.

    Article  CAS  Google Scholar 

  • Parmelee RW, Wentsel RS, Phillips CT, Simini M, Checkai RT (1993) Soil microcosm for testing the effects of chemical pollutants on soil fauna communities and trophic structure. Environ Toxicol Chem 12:1477–1486.

    Article  CAS  Google Scholar 

  • Parmelee RW, Phillips CT, Checkai RT, Bohlen PJ (1997) Determining the effects of pollutants on soil faunal communities and trophic structure using a refined microcosm system. Environ Toxicol Chem 16:1212–1217.

    Article  CAS  Google Scholar 

  • Paul E, Clark F (1989) Soil Microbiology and Biochemistry. Academic Press, New York, pp 93–251.

    Google Scholar 

  • Pearce MJ (1997) Termites: Biology and Pest Management. CAB International, New York.

    Google Scholar 

  • Péfaur J (1981) Composition and phenology of epigeic animal communities in the Lomas of southern Peru. J Arid Environ 4:31–42.

    Google Scholar 

  • Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39:287–388.

    Google Scholar 

  • Polis G (1991) Desert communities: an overview of patterns and processes. In: Polis G (ed) The Ecology of Desert Communities. University of Arizona Press, Tucson, pp 1–26.

    Google Scholar 

  • Polis G, Yamashita T (1991) The ecology and importance of predacious arthropods in desert communities. In: Polis G (ed) The Ecology of Desert Communities. University of Arizona Press, Tucson, pp. 180–222.

    Google Scholar 

  • Rader BR, Nimmo DWR, Chapman PL (1997) Phytotoxicity of floodplain soils contaminated with trace metals along the Clark Fork River, Grant-Kohrs Ranch National Historic Site, Deer Lodge, Montana, USA. Environ Toxicol Chem 16:1422–1432.

    CAS  Google Scholar 

  • Ramanathan A, Burks SL (1996) Hazard evaluation of soil contaminants with aquatic animals and plant toxicity tests. Bull Environ Contam Toxicol 56:965–963.

    Google Scholar 

  • Regno V, Arulgnanendran J, Nirmalakhandan N (1998) Microbial toxicity in soil medium. Ecotoxicol Environ Saf 39:48–56.

    Article  Google Scholar 

  • Rutgers M, Breure AM (1999) Risk assessment, microbial communities and pollution-induced community tolerance. Hum Ecol Risk Assess 5:661–670.

    CAS  Google Scholar 

  • Rutgers M, Van’t Verlaat IM, Wind B, Posthuma L, Breure AM (1998) Rapid method for assessing pollution-induced community tolerance in contaminated soil. Environ Toxicol Chem 17:2210–2213.

    Article  Google Scholar 

  • Sandifer RD, Hopkin SP (1997) Effects of temperature on the relative toxicities of Cd, Cu, Pb and Zn to Folsomia candida (Collembola). Ecotoxicol Environ Saf 37:125–130.

    Article  PubMed  CAS  Google Scholar 

  • Santos PF, Whitford WG (1983) Seasonal and spatial variation in the soil microarthropod fauna of the White Sands National Monument. Southwest Nat 28:417–421.

    Article  Google Scholar 

  • Santos PF, Phillips J, Whitford W (1981) The role of mites and nematodes in early stages of buried litter decomposition in a desert. Ecology 62:664–669.

    Article  Google Scholar 

  • Schlesinger W (1991) Biogeochemistry. Academic Press, New York, pp 127–348.

    Google Scholar 

  • Schneider K, Radenberg T, Schneider T, Pauly-Mundegar D (1996) Uptake of nitroaromatic compounds in plants. Environ Sci Pollut Res 3:135–138.

    Article  CAS  Google Scholar 

  • Schnürer J, Clarholm M, Bastrom S, Rosswall T (1986) Effects of moisture on soil microorganisms and nematodes: a field experiment. Microb Ecol 12:217–230.

    Article  Google Scholar 

  • Scott-Forsdsman JJ, Krogh PH, Weeks JM (1997) Sublethal toxicity of copper to a soil dwelling springtail, Folsomia fimetaria (Collembola: Isotomidae). Environ Toxicol Chem 16:2538–2542.

    Google Scholar 

  • Scott-Forsdsman JJ, Weeks JM, Hopkin SP (1998) Toxicity of nickel to the earthworm and the applicability of the neutral red retention assay. Ecotoxicology 7:291–295.

    Article  Google Scholar 

  • Scott-Fordsman JJ, Krogh PH, Hopkin SP (1999) Toxicity of nickel to a soil-dwelling springtail, Folsomia fimetaria (Collembola: Isotomidae). Ecotoxicol Environ Saf 43: 57–61.

    Article  Google Scholar 

  • Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46.

    Article  Google Scholar 

  • Seastedt T, Tate CM (1981) Decomposition rates and nutrient contents of arthropod remains in forest litter. Ecology 62:13–19.

    Article  CAS  Google Scholar 

  • Shachak M (1980) Energy allocation and life history strategy of the desert isopod H. reaumuri. Oecologia 45:404–413.

    Article  Google Scholar 

  • Sheppard SC (1999) Soil microbial bioassays: quick and relevant but are they useful? Hum Ecol Risk Assess 5:697–706.

    CAS  Google Scholar 

  • Sheppard SC, Evenden WG (1994) Simple whole-soil bioassay based on microarthropods. Bull Environ Contam Toxicol 52:95–101.

    Article  PubMed  CAS  Google Scholar 

  • Shimabuku R, Ratsch H, Wise C, Nwosu J, Kaputska L (1991) A new life cycle bioassay for assessment of the effects of toxic chemicals using rapid cycling Brassica. In: Gorsuch J, Lower W, Wang W, Lewis M (eds) Plants for Toxicity Assessment. ASTM STP 1115. American Society for Testing and Materials, Philadelphia, PA, pp 365–375.

    Chapter  Google Scholar 

  • Siciliano S, Roy R (1999a) Re-thinking nitrifiers as indicators of toxicants in soil. SETAC (Society of Environmental Toxicology and Chemistry) News 19:22.

    Google Scholar 

  • Siciliano S, Roy R (1999b) The role of microbial tests in ecological risk assessment: differentiating between exposure and effects. Hum Ecol Risk Assess 5:671–682.

    CAS  Google Scholar 

  • Simini M, Wentsel RS, Checkai RT, Phillips CT, Chester NA, Major MA, Amos JC (1995) Evaluation of soil toxicity at Joliet Army Ammunition Plant. Environ Toxicol Chem 14:623–630.

    Article  CAS  Google Scholar 

  • Smit CE, Van Gestel CAM (1996) Comparison of the toxicity of zinc for the springtail Folsomia candida in artificially contaminated and polluted field soils. Appl Soil Ecol 3:127–136.

    Article  Google Scholar 

  • Smit CE, Van Gestel CAM (1998) Effects of soil type, prepercolation and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida. Environ Toxicol Chem 17:1132–1141.

    CAS  Google Scholar 

  • Smit CE, Van Belen P, Van Gestel CAM (1997) Development of zinc bioavailability and toxicity for the springtail Folsomia candida in an experimentally contaminated field plot. Environ Pollut 98:73–80.

    Article  PubMed  CAS  Google Scholar 

  • Snowashbrook J, Erstfeld KM (1998) Soil nematode communities as indicators of the effects of environmental contamination with polycyclic aromatic hydrocarbons. Ecotoxicology 7:363–370.

    CAS  Google Scholar 

  • Sømme L (1995) Invertebrates in Hot and Cold Climates. Springer, New York.

    Book  Google Scholar 

  • Steinberger Y, Whitford WG (1984) Spatial and temporal relationships of soil microarthropods on a desert watershed. Pedobiologia 26:275–284.

    Google Scholar 

  • Stephenson GL, Solomon KR, Hale B, Greenberg BM, Scroggins RP (1997) Development of suitable test methods for evaluating the toxicity of contaminated soils to a battery of plant species relevant to soil environments in Canada. In: Dwyer FJ, Doane TR, Hinman ML (eds) Environmental Toxicology and Risk Assessment. ASTM STP 1317. American Society for Testing and Materials, Philadelphia, PA, pp 474–489.

    Google Scholar 

  • Strayer RF, Edwards NT, Walton WT, Charles-Shannon V (1983) Potential terrestrial fate and effects on soil biota of coal liquefaction product spill. Environ Toxicol Chem 2:217–224.

    Article  CAS  Google Scholar 

  • Streit B (1984) Effects of high copper concentrations on soil invertebrates (earthworms and oribatid mites): experimental results and a model. Oecologia 64:381–388.

    Article  Google Scholar 

  • Strojan C (1978a) The impact of zinc smelter emissions on forest litter arthropods. Oikos 31:41–46.

    Article  Google Scholar 

  • Strojan C (1978b) Forest leaf littler decomposition in the vicinity of a zinc smelter. Oecologia 32:203–212.

    Article  Google Scholar 

  • Suter GW (1993) Ecological Risk Assessment. Lewis, Boca Raton, pp 175–246.

    Google Scholar 

  • Taylor HS, MacKay WP, Herrick JE, Guerrero RS, Whitford WG (1998) Comparison of field methods to detect termite activity in the northern Chihuahuan Desert (Isoptera). Sociobiology 32:1–15.

    Google Scholar 

  • Thompson P, Ramer L, Schnoor J (1999) Hexahydro-1,3,5-trinitro-1,3,5-triazine translocation in poplar trees. Environ Toxicol Chem 18:279–284.

    Article  CAS  Google Scholar 

  • Toft S, Wise DH (1999) Growth, development, and survival of a generalist predator fed single- and mixed-species diets of different quality. Oecologia 119:191–197.

    Article  Google Scholar 

  • Tranvik L, Eijsackers H (1989) On the advantage of Folsomia fimetarioides over Isotomiella minor (Collembola) in metal polluted soil. Oecologia 80:195–200.

    Google Scholar 

  • Tranvik L, Bengtsson G, Rundgren S (1993) Relative abundance and resistance of two Collembola species under metal stress. J Appl Ecol 30:43–52.

    Article  Google Scholar 

  • Trevors J, Oddie K, Belliveau B (1985) Metal resistance in bacteria. FEMS Microbiol Rev 32:39–54.

    Article  CAS  Google Scholar 

  • Tyler G, Pahlsson A, Bengtsson G, Bââth E, Tranvik L (1989) Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. Water Air Soil Pollut 47:189–215.

    Article  CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1994a) ECO update: using toxicity tests in ecological risk assessment, 2(1). EPA 540-F-94–012. Office of Solid and Hazardous Waste, Washington, DC.

    Google Scholar 

  • USEPA (1994b) ECO update: catalogue of standard toxicity tests for ecological risk assessment, 2(2). EPA 540-F-94–013. Office of Solid and Hazardous Waste, Washington, DC.

    Google Scholar 

  • USEPA (1994c) ECO Update: field studies for ecological risk assessment, 2(3). EPA 540-F-94–014. Office of Solid and Hazardous Waste, Washington, DC.

    Google Scholar 

  • USEPA (1997) Ecological risk assessment guidance for Superfund: process for designing and conducting ecological risk assessments. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Van Beelen P, Doelman P (1997) Significance and application of microbial toxicity tests in assessing ecotoxicological risk of contaminants in soil and sediment. Chemosphere 34:455–499.

    Article  Google Scholar 

  • Van Brummelen TC, Van Gestel CAM, Verweij RA (1996) Long-term toxicity of five polycyclic aromatic hydrocarbons to the terrestrial isopods Oniscus asellus and Porcellio scaber. Environ Toxicol Chem 15:1199–1210.

    Google Scholar 

  • Van der Valk H (1997) Community structure and dynamics in desert ecosystems: potential implications for insecticide risk assessment. Arch Environ Contam Toxicol 32: 11–21.

    Article  PubMed  Google Scholar 

  • Van Gestel CAM (1998) Evaluation of the developmental status of ecotoxicity tests on soil fauna. In: Lokke H, Van Gestel CAM (eds) Handbook of Soil Invertebrate Toxicity Tests. Wiley, Chichester, pp 57–67.

    Google Scholar 

  • Van Gestel CAM, Doornekamp A (1998) Tests on the oribatid mite Platynothrus peltifer. In: Lokke H, Van Gestel CAM (eds) Handbook of Soil Invertebrate Toxicity Tests. Wiley, Chichester, pp 114–130.

    Google Scholar 

  • Van Gestel CAM, Hensbergen PJ (1997) Interaction of Cd and Zn toxicity for Folsomia candida Willem (Collembola: Isotomidae) in relation to bioavailability in soil. Environ Toxicol Chem 16:1177–1186.

    Google Scholar 

  • Van Gestel CAM, Van Straalen NM (1994) Ecotoxicological test systems for terrestrial invertebrates. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms, Lewis, Boca Raton, pp 205–228.

    Google Scholar 

  • Van Kessel WHM, Brocades-Zaalberg RW, Seinen W (1989) Testing environmental pollutants on soil organisms: a simple assay to investigate the toxicity of environmental pollutants on soil organisms, using CdCl2 and nematodes. Ecotoxicol Environ Saf 18:171–190.

    Google Scholar 

  • Van Straalen NM, Verweij RA (1991) Effects of benzo(a)pyrene on food assimilation and growth efficiency in Porcellio scaber (Isopoda). Bull Environ Contam Toxicol 46:134–140.

    Article  PubMed  Google Scholar 

  • Vossbrinck CR, Coleman D, Woolley TA (1979) Abiotic and biotic factors in litter decomposition in a semiarid grassland. Ecology 60:265–271.

    Article  CAS  Google Scholar 

  • Wallwork J (1972) Distribution patterns and population dynamics of the micro-arthropods of a desert soil in southern California. J Anim Ecol 41:291–310.

    Article  Google Scholar 

  • Walter DE (1987) Belowground arthropods of semiarid grasslands. In: Capinera JL (ed) Integrated Pest Management on Rangeland: A Shortgrass Prairie Perspective. West-view Press, Boulder, CO, pp 271–290.

    Google Scholar 

  • Wang W (1987) Root elongation method for toxicity testing of organic and inorganic pollutants. Environ Toxicol Chem 6:409–414.

    Article  CAS  Google Scholar 

  • Wang W (1991) Literature review on higher plants for toxicity testing. Water Air Soil Pollut 59:381–400.

    Article  CAS  Google Scholar 

  • Weyers A, Schuphan I (1998) Variation of effect endpoint parameters in a terrestrial model ecosystem. Ecotoxicology 7:335–341.

    Article  Google Scholar 

  • Whitford WG (1989) Abiotic controls on the functional structure of soil food webs. Biol Fertil Soils 8:1–6.

    Article  Google Scholar 

  • Whitford WG (1991) Subterranean termites and long-term productivity of desert grasslands. Sociobiology 19:235–243.

    Google Scholar 

  • Whitford WG (1996) The importance of the biodiversity of soil biota in arid ecosystems. Biodivers Conserv 5:185–195.

    Article  Google Scholar 

  • Whitford WG, Repass RT, Parker LW, Elkins NZ (1982a) Effects of initial litter accumulation and climate on litter disappearance in a desert ecosystem. Am Midl Nat 108:105–110.

    Article  Google Scholar 

  • Whitford WG, Steinberger Y, Ettershank G (1982b) Contributions of subterranean termites to the “economy” of Chihuahuan Desert ecosystems. Oecologia 55:298–302.

    Article  Google Scholar 

  • Whitford WG, Forbes GS, Kerley GI (1995) Diversity, spatial variability, and functional roles of invertebrates in desert grassland ecosystems. In: McClaran MP, Van De-vender TR (eds) The Desert Grassland. University of Arizona Press, Tucson, pp 152–195.

    Google Scholar 

  • Whitford WG, Van Zee J, Nash MS, Smith WE, Herrick JE (1999) Ants as indicators of exposure to environmental stress in North American desert grasslands. Environ Monit Assess 54:417–171.

    Google Scholar 

  • Wilborn DC, Bollman MA, Gillett CS, Ott SL, Linder GL (1997) A field screening method using earthworms (Eisenia foetida andrei). In: Dwyer FJ, Doane TR, Hinman ML (eds) Environmental Toxicology and Risk Assessment: Modeling and Risk Assessment. ASTM STP 1317. American Society for Testing and Materials, Philadelphia, PA, pp. 491–517.

    Google Scholar 

  • Wiles JA, Krogh PH (1998) Tests with the Collembolans Isotoma viridis, Folsomia candida, and Folsomia fimetaria. In: Lokke H, Van Gestel CAM (eds) Handbook of Soil Invertebrate Toxicity Tests. Wiley, Chichester, pp 131–156.

    Google Scholar 

  • Yeates GW, Bongers T (1999) Nematode diversity in agroecosystems. Agric Ecosyst Environ 74:113–135.

    Article  Google Scholar 

  • Zak J, Freckman D (1991) Soil communities in deserts: microarthropods and nematodes. In: Polis G (ed) The Ecology of Desert Communities. University of Arizona Press, Tucson, pp 55–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Markwiese, J.T., Ryti, R.T., Hooten, M.M., Michael, D.I., Hlohowskyj, I. (2001). Toxicity Bioassays for Ecological Risk Assessment in Arid and Semiarid Ecosystems. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 168. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0143-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0143-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9481-5

  • Online ISBN: 978-1-4613-0143-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics