Skip to main content

Sorption and Transport of Gases and Vapors in Plant Cuticles

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 121))

Abstract

Life arose in water and many plants, notably the algae, are still largely restricted to the aquatic environment. The evolutionary move from an aquatic to a terrestrial existence demanded several structural innovations, for the terrestrial environment was/is in many ways hostile to life. Among the many problems faced by a land plant is the changed water potential gradient between the plant body and the surroundings. It was necessary to build up an effective barrier to prevent excessive loss of water by evaporation. On the other hand it was essential to maintain a sufficiently permeable surface for gas exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharoni SM (1976) Molecular stiffness and thermal properties of polymers. J Appl Polym Sci 20: 2863–2869.

    Article  CAS  Google Scholar 

  • Andrich G, Fiorentini R, Tuci A, Galoppini C (1989) Skin permeability to oxygen in apples stored in controlled atmosphere. J Am Soc Hort Sci 114: 770–775.

    Google Scholar 

  • Arber A (1920) Water plants. University Press, Cambridge.

    Google Scholar 

  • Arndt U, Seufert G, Nobel W (1982) Die Beteiligung von Ozon an der Komplexkrankheit der Tanne (Abies alba Mill.)—eine prüfenswerte Hypothese. Staub Reinh Luft 42: 243–246.

    CAS  Google Scholar 

  • Aronhime MT, Neumann S, Marom G (1987) The anisotropic diffusion of water in Kevlar-epoxy composites. J Mat Sci 22: 2435–2446.

    Article  CAS  Google Scholar 

  • Ashley RJ (1985) Permeability and plastics packaging. In: Comyn J (ed) Polymer permeability. Elsevier Applied Science Publishers, London, New York, pp 269–308.

    Google Scholar 

  • Baig MN, Tranquillini W (1980) The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in dessication damage at the alpine timberline. Oecologia 47: 252–256.

    Article  Google Scholar 

  • Baker EA (1982) Chemistry and morphology of plant epicuticular waxes. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, New York, Toronto, Sidney, San Francisco, pp 139–165.

    Google Scholar 

  • Barrer RM (1939) Permeation, diffusion and solution of gases in organic polymers. Trans Faraday Soc 35: 628–656.

    Article  CAS  Google Scholar 

  • Barrer RM (1968) Diffusion and permeation in heterogeneous media. In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, London, New York, Toronto, Sidney, San Francisco, pp 165–217.

    Google Scholar 

  • Barrie JA (1968) Water in polmers. In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, London, New York, Toronto, Sidney, San Francisco, pp 259–314.

    Google Scholar 

  • Barrie JA, Williams MJL, Munday K (1980) Sorption and diffusion of hydrocarbon vapors in glassy polymers. Polym Eng Sci 20: 20–29.

    Article  Google Scholar 

  • Becker M (1987) Permeabilität der pflanzlichen Kutikula: Bestimmung und Analyse der Transportparameter für lipophile organische Verbindungen. Doctoral diss., Technische Universität München.

    Google Scholar 

  • Becker M, Kerstiens G, Schönherr J (1986) Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1: 54–60.

    Article  CAS  Google Scholar 

  • Belousov VN, Mikitaev AK (1983) Gasdurchlässigkeit von Copolymeren. Acta Polym 34: 595–602.

    Article  CAS  Google Scholar 

  • Bixler HJ, Sweeting OJ (1971) Barrier properties of films. In: Sweeting OJ (ed) The science and technology of polymer films, vol II. Wiley-Interscience, New York, London, Sydney, Toronto, pp 8–130.

    Google Scholar 

  • Blahnik R (1983) Problems of measuring water sorption in organic coatings and films, and calculations of complicated instances of moistening. Prog Organic Coatings 11: 353–392.

    Article  CAS  Google Scholar 

  • Blakeman JP, Brodie IDS (1976) Inhibition of pathogens by epiphytic bacteria on aerial plant surfaces. In: Dickinson CH, Price TF (eds) Microbiology of aerial plant surfaces. Academic Press, London, New York, Toronto, Sidney, San Francisco.

    Google Scholar 

  • Burrows FJ, Milthorep FL (1976) Stomatal conductance in the control of gas exchange. In: Kozlowski TT (ed) Water deficits and plant growth, vol 4, Soil water measurement, plant responses and breeding for drought resistance. Academic Press, London, New York, Toronto, Sidney, San Francisco, pp 103–152.

    Google Scholar 

  • Cameron AC, Yang SF (1982) A simple method for the determination of resistance to gas diffusion in plant organs. Plant Physiol 70: 21–23.

    Article  PubMed  CAS  Google Scholar 

  • Cape JN, Fowler D (1981) Changes in epicuticular wax of Pinus sylvestris exposed to polluted air. Silva Fennica 15: 457–458.

    Google Scholar 

  • Cassidy PE, Aminabhavi TM (1983) Water permeation through elastomers and plastics. Rubber Chem 56: 594–618.

    Article  CAS  Google Scholar 

  • Chabot JF, Chabot BF (1977) Ultrastructure of the epidermis and stomatal complex of balsam fir ( Abies balsamea ). Can J Bot 55: 1064–1075.

    Google Scholar 

  • Chern RT, Koros WJ, Yui B, Hopfenberg HB, Stannett VT (1984) Selective permeation of CO2 and CH, through Kapton’ polyimide: effects of penetrant competition and gas-phase nonideality. J Polym Sci B 22: 1061–1084.

    CAS  Google Scholar 

  • Clarke JM, Richards RA (1988) The effects of glaucousness, epicuticular wax, leaf age, plant height, and growth environment on water loss rates of excised wheat leaves. Can J Plant Sci 68: 975–982.

    Article  Google Scholar 

  • Crafts AS, Foy CL (1962) The chemical and physical nature of plant surfaces in relation to the use of pesticides and their residues. Residue Reviews 1: 112–139.

    CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford.

    Google Scholar 

  • Cruickshank IAM, Perrin DR, Mandryk M (1977) Fungitoxicity of duvatrienediols associated with the cuticular wax of tobacco leaves. Phytopath Z 90: 243–249.

    Article  CAS  Google Scholar 

  • Cussler EL (1984) Diffusion. Mass transfer in fluid systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Darwin F (1916) On the relation between transpiration and stomatal aperture. Phil Trans R Soc B 207: 413–437.

    Article  Google Scholar 

  • Deas AHB, Holloway PJ (1977) The intermolecular structure of some plant cutins. In: Tevini M, Lichtenthaler HK (eds) Lipids and lipid polymers in higher plants. Springer-Verlag, Berlin, Heidelberg, New York, pp 293–299.

    Google Scholar 

  • Denna DW (1970) Transpiration and the waxy bloom in Brassica oleracea. Aust J Biol Sci 23: 27–31.

    Google Scholar 

  • Dollard GJ, Atkins DHF, Davies TJ, Healy C (1987) Concentrations and dry deposition velocities of nitric acid. Nature 326: 481–483.

    Article  CAS  Google Scholar 

  • Dugger WM (1952) The permeability of non-stomate leaf epidermis to carbon dioxide. Plant Physiol 27: 489–499.

    Article  PubMed  CAS  Google Scholar 

  • Eckl K, Gruler H (1980) Phase transitions in plant cuticles. Planta 150: 102–113.

    Article  CAS  Google Scholar 

  • Esau K (1965) Plant anatomy. John Wiley & Sons, New York, London, Sidney.

    Google Scholar 

  • Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14: 147–154, 472.

    Article  CAS  Google Scholar 

  • Felder RM, Huvard GS (1980) Permeation, diffusion, and sorption of gases and vapors. In: Marton L, Marton C (eds) Methods of experimental physics, vol 16 C, Polymers. Academic Press, New York, London, Toronto, pp 315–377.

    Google Scholar 

  • Fitter AH, Hay RKM (1987) Environmental physiology of plants, 2nd edn. Academic Press, London, New York, Toronto, Sidney, San Francisco.

    Google Scholar 

  • Franke W (1967) Mechanisms of foliar penetration of solutions. Ann Rev Plant Physiol 18: 281–300.

    Article  CAS  Google Scholar 

  • Franz HP, Bartusch W, Heiss R (1972) Untersuchungen über die Wasserdampfdur-chlässigkeit paraffinbeschichteter Papiere. Fette Seifen Anstrichmittel 74: 469–475.

    Article  CAS  Google Scholar 

  • Fowler D, Cape JN, Unsworth MH (1989) Deposition of atmospheric pollutants on forests. Phil Trans R Soc London B 324: 247–265.

    Article  Google Scholar 

  • Garrec JP, Kerfourn C (1989) Effects de pluies acides et de l’ozone sur la perméabilité à l’eau et aux ions de cuticules isolées. Environ Exp Bot 29: 215–228.

    Article  CAS  Google Scholar 

  • Garrec JP, Plebin R (1986) Perméabilité au fluorure d’hydrogène (HF) des cuticules avec ou sans stomates de feuilles: influence de la présence des stomates et comparaisons avec la perméabilité à l’eau. Environ Exp Bot 26: 299–308.

    Article  CAS  Google Scholar 

  • Geyer U, Schönherr J (1990) The effect of the environment on the permeability and composition of Citrus leaf cuticles. I. Water permeability of isolated cuticular membranes. Planta 180: 147–153.

    Google Scholar 

  • Godzik S, Halbwachs G (1986) Structural alterations of Aesculus hippocastanum leaf surface by air pollutants. Z PflKrankh PflSchutz 93: 590–596.

    Google Scholar 

  • Grennfelt P, Bengtson C, Sharkey L (1983) Dry deposition of nitrogen dioxide to Scots pine needles. In: Pruppacher HR, Semonin RG, Slinn WGN (eds) Precipitation scavenging, dry deposition and resuspension. Elsevier, Amsterdam, pp 753–762.

    Google Scholar 

  • Grill D (1973) Rasterelektronenmikroskopische Untersuchungen an S02-belasteten Fichtennadeln. Phytopath Z 78: 75–80.

    Article  CAS  Google Scholar 

  • Gullvag BM, Oestensen H (1986) Wax layer erosion in spruce needles—an indicator of air-borne pollution. J Ultrastrct Res 94: 280–282.

    Google Scholar 

  • Haas K (1974) Untersuchungen zum chemischen Aufbau der Cuticula während der Organogenese von Blättern und Früchten sowie zur Cuticulartranspiration. Doctoral diss., Universität Hohenheim.

    Google Scholar 

  • Haas K, Schönherr J (1979) Composition of soluble cuticular lipids and water permeability of cuticular membranes from Citrus leaves. Planta 146: 399–403.

    Article  CAS  Google Scholar 

  • Hadley NF (1989) Lipid water barriers in biological systems. Prog Lipid Res 28: 1–33.

    Article  PubMed  CAS  Google Scholar 

  • Hall DM, Jones RL (1961) Physiological significance of surface wax on leaves. Nature 191: 95–96.

    Article  Google Scholar 

  • Hanover JW, Reicosky DA (1971) Surface wax deposits on foliage of Picea pungens and other conifers. Am J Bot 58: 681–687.

    Article  Google Scholar 

  • Hartley GS, Graham-Bryce IJ (1980) Physical principles of pesticide behaviour. Academic Press, London, New York.

    Google Scholar 

  • Hildebrand JH, Scott RL (1950) The Solubility of Nonelectrolytes. 3rd Edn, Reinhold, New York.

    Google Scholar 

  • Hoch HC (1979) Penetration of chemicals into the Malus leaf cuticle. An ultra-structural analysis. Planta 147: 186–195.

    Article  CAS  Google Scholar 

  • Holloway PJ (1982a) Structure and histochemistry of plant cuticular membranes: an overview. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 1–32.

    Google Scholar 

  • Holloway PJ (1982b) The chemical constitution of plant cutins. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 45–85.

    Google Scholar 

  • Holmgren P, Jarvis PG, Jarvis MS (1965) Resistances to carbon dioxide and water vapour transfer in leaves of different plant species. Physiol Plant 18: 557–573.

    Article  Google Scholar 

  • Hopfenberg HB, Paul DR (1978) Transport phenomena in polymer blends. In: Paul DR, Newman S (eds) Polymer blends, vol I. Academic Press, New York, pp 445–489.

    Google Scholar 

  • Hopfinger AJ, Koehler MG, Pearlstein RA, Tripathy SK (1988) Molecular modeling of polymers. IV. Estimation of glass transition temperatures. J Polym Sci B 26: 2007–2028.

    Article  CAS  Google Scholar 

  • Huebert BJ, Robert CH (1985) The dry deposition of nitric acid to grass. J Geophys Res 90 (D1): 2085–2090.

    Article  CAS  Google Scholar 

  • Huttunen S, Laine K (1983) Effects of air-borne pollutants on the surface wax structure of Pinus sylvestris needles. Ann Bot Fennici 20: 79–86.

    CAS  Google Scholar 

  • Jefferson PG, Johnson DA, Asay KH (1989) Epicuticular wax production, water status and leaf temperature in triticeae range grasses of contrasting visible glaucousness. Can J Plant Sci 69: 513–519.

    Article  Google Scholar 

  • Jeffree CE, Johnson RPC, Jarvis PG (1971) Epicuticular wax in the stomatal antechambers of Sitka spruce and its effects on the diffusion of water vapour and carbon dioxide. Planta 98: 1–10.

    Article  Google Scholar 

  • Jeffree CE, Read ND, Smith JAC, Dale JE (1987) Water droplets and ice deposits in leaf intercellular space: redistribution of water during cryofixation for scanning electron microscopy. Planta 172: 20–37.

    Article  Google Scholar 

  • Johansson C (1987) Pine forest: a negligible sink for atmospheric NOx in rural Sweden. Tellus 39B: 426–438.

    Google Scholar 

  • Jolley JE, Hildebrand JH (1958) Solubility, entropy and partial molar volumes in solutions of gases in non-polar solvents. J Am Chem Soc 80: 1050–1054.

    Article  CAS  Google Scholar 

  • Jordan WR, Shouse PJ, Blum A, Miller FR, Monk RL (1984) Environmental physiology of sorghum. II. Epicuticular wax load and cuticular transpiration. Crop Sci 24: 1168–1173.

    Article  Google Scholar 

  • Kamp H (1930) Untersuchungen über Kutikularbau und kutikuläre Transpiration von Blättern. Jb wiss Bot 72: 403–465.

    Google Scholar 

  • Kenk G, Evers F, Unfried P, Schröter H (1983) Düngung als Therapie gegen Immissionswirkungen in Tannen-Fichten-Beständen? AFZ 154: 153–170.

    CAS  Google Scholar 

  • Kerler F, Schönherr J (1988) Permeation of lipophilic chemicals across plant cuticles: Prediction from partition coefficients and molar volumes. Arch Environ Contam Toxicol 17: 7–12.

    Article  CAS  Google Scholar 

  • Kerstiens (1988) Funktionelle Veränderungen der pflanzlichen Kutikula durch Ozon. Doctoral diss., Technische Universität München.

    Google Scholar 

  • Kerstiens G, Lendzian KJ (1989a) Interactions between ozone and plant cuticles. I. Ozone deposition and permeability. New Phytol 112: 13–19.

    Article  CAS  Google Scholar 

  • Kerstiens G, Lendzian KJ (1989b) Interactions between ozone and plant cuticles. II. Water permeability. New Phytol 112: 21–27.

    Article  CAS  Google Scholar 

  • Kidston R, Lang WH (1920) On old red sandstone plants: Rhynia. Trans R Soc Edinburgh 52: 603–627.

    Google Scholar 

  • Kolattukudy PE (1986) Enzymatic penetration of the plant cuticle by fungal pathogens. Ann Rev Phytopath 23: 223–250.

    Article  Google Scholar 

  • Laisk A, Pfanz H, Schramm MJ, Heber U (1988) Sulfur dioxide fluxes into different cellular compartments of leaves photosynthesizing in a polluted atmosphere. I.: Computer analysis. Planta 173: 230–240.

    CAS  Google Scholar 

  • Lampard JF, Carter GA (1973) Chemical investigations on resistance of coffee berry disease in Coffea arabica. An antifungal compound in coffee cuticular wax. Ann Appl Biol 73: 31–37.

    Article  CAS  Google Scholar 

  • Larcher (1980) Physiological plant ecology, revised edition. Springer-Verlag, New York.

    Google Scholar 

  • Larsson S, Svenningsson M (1986) Cuticular transpiration and epicuticular lipids of primary leaves of barley (Hordeum vulgare). Physiol Plant 68: 13–19.

    Article  CAS  Google Scholar 

  • Lee WA, Rutherford RA (1975) The glass transition temperatures of polymers. In: Brandrup J, Immergut EH (eds) Polymer handbook, 2nd edn. Wiley-Interscience, New York, London, Sydney, Toronto.

    Google Scholar 

  • Lendzian KJ (1982) Gas permeability of plant cuticles: oxygen permeability. Planta 155: 310–315.

    Article  CAS  Google Scholar 

  • Lendzian KJ (1984) Permeability of plant cuticles to gaseous air pollutants. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 77–81.

    Google Scholar 

  • Lendzian KJ (1987) Aufnahme and zellphysiologische Wirkungen von Luftschadstoffen. Naturwissenschaften 74: 282–288.

    Article  CAS  Google Scholar 

  • Lendzian KJ, Kahlert J (1988) Interactions between nitrogen dioxide and plant cuticles: binding to cuticular structures. Plant Physiol (Life Sci Adv) 7: 197–207.

    Google Scholar 

  • Lendzian KJ, Kerstiens G (1988) Interactions between plant cuticles and gaseous air pollutants. In: The Association of Applied Biologists (ed) Aspects of applied biology 17, part 2 Environmental aspects of applied biology, Wellesbourne, UK, pp 97–104.

    Google Scholar 

  • Lendzian KJ, Nakajima A, Ziegler H (1986) Isolation of cuticular membranes from various conifer needles. Trees 1: 47–53.

    Article  Google Scholar 

  • Lendzian KJ, Schönherr J (1983) In-vivo study of cutin synthesis in leaves of Clivia miniata Reg. Planta 158: 70–75.

    Article  CAS  Google Scholar 

  • Lendzian KJ, Unsworth MH (1983) Ecophysiological effects of atmospheric pollutants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology, vol 4, Encyclopedia of plant physiology, vol 12D, Springer-Verlag, Berlin, Heidelber, New York, pp 465–502.

    Google Scholar 

  • Levine H, Slade L (1988) Water as a plasticizer: physico-chemical aspects of low-moisture polymeric systems. In: Franks F (ed) Water science reviews, vol 3, Water dynamics, Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney, pp 79–185.

    Chapter  Google Scholar 

  • Lindberg SE, Lovett GM, Richter DD, Johnson DW (1986) Atmospheric deposition and canopy interactions of major ions in a forest. Science 231: 141–145.

    Article  PubMed  CAS  Google Scholar 

  • Marshall JD, Cadle SH (1989) Evidence for trans-cuticular uptake of HNO3 vapor by foliage of eastern white pine (Pinus strobus L.). Environ Pollut 60: 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Martin JT, Juniper BE (1970) The cuticle of plants. Arnolds, London.

    Google Scholar 

  • Mauze GR, Stern SA (1982) The solution and transport of water vapor in poly-(acrylonitrile): a re-examination. J Member Sci 12: 51–64.

    Article  CAS  Google Scholar 

  • Meidner H (1986) Cuticular conductance and the humidity response of stomata. J Exp Bot 37: 517–525.

    Article  Google Scholar 

  • Meyer JA, Rogers, C, Stannett V, Szwarc M (1957) Studies in the gas and vapor permeability of plastic films and coated papers. Part III. The permeation of mixed gases and vapors. TAPPI 40: 142–146.

    CAS  Google Scholar 

  • Miller RH (1985) The prevalence of pores and canals in leaf cuticular membranes. Ann Bot 55: 459–471.

    Google Scholar 

  • Miller RH (1986) The prevalence of pores and canals in leaf cuticular membranes. 2. Supplemental studies. Ann Bot 57: 419–434.

    Google Scholar 

  • Nakamura Y, Jett CA Jr., Negishi M, Doi K, Kageyama E, Kudo K (1970) Rheological properties of elastomers based on cellulose fibers. J Appl Polym Sci 14: 929–951.

    Article  CAS  Google Scholar 

  • Nip M, Tegelaar, EW, de Leeuw JW, Schenck PA (1986) A new nonsaponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften 73: 579–585.

    Article  CAS  Google Scholar 

  • Nip M, de Leeuw JW, Holloway PJ, Jensen JPT, Sprenkels JCM, de Pooter M, Sleeckx JJM (1987) Comparison of flash pyrolysis, differential scanning calorimetry, “C NMR and IR spectroscopy in the analysis of a highly aliphatic biopolymer from plant cuticles. J Anal Appl Pyrolysis 11: 287–295.

    Article  CAS  Google Scholar 

  • Nobel PS (1983) Biophysical plant physiology and ecology. Freeman, New York.

    Google Scholar 

  • Paul DR, Koros WJ (1976) Effect of partially immobilizing sorption on permeability and the diffusion time lag. J Polym Sci B 14: 675–685.

    CAS  Google Scholar 

  • Petropoulos JH (1985) Membranes with non-homogeneous sorption and transport properties. In: Gordon M (ed) Adv Polym Sci 64, Polymer membranes. Springer-Verlag, Berlin, Heidelberg, New York, pp 93–142.

    Google Scholar 

  • Pisek A, Berger E (1938) Kutikuläre Transpiration und Trockenresistenz isolierter Blätter und Sprosse. Planta 28: 124–155.

    Article  CAS  Google Scholar 

  • Pitcairn CER, Jeffree CE, Grace J (1986) Influence of polishing and abrasion on the diffusive conductance of leaf surface of Festuca arundinacea Schreb. Plant Cell Environ 9: 191–196.

    Google Scholar 

  • Rennenberg H (1984) The fate of excess sulfur in higher plants. Ann Rev Plant Physiol 35: 121–153.

    Article  CAS  Google Scholar 

  • Riederer M (1989) The cuticle of conifers: structure, composition and transport properties. In: Schulze ED, Lange OL, Oren R (eds) Ecological Studies vol 77. Springer-Verlag, Berlin, Heidelberg, pp 157–192.

    Google Scholar 

  • Riederer M, Schneider G (1989) Comparative study of the composition of waxes extracted from isolated leaf cuticles and from whole leaves of Citrus: Evidence for selective extraction. Physiol Plant 77: 373–384.

    Article  CAS  Google Scholar 

  • Riederer M, Schneider G (1990) The effect of the environment on the permeability and composition of Citrus leaf cuticles. II. Composition of soluble cuticular lipids and correlation with transport properties. Planta 180: 154–165.

    Article  CAS  Google Scholar 

  • Riederer M, Schönherr J (1984) Accuumulation and transport of (2,4dichlorophenoxy)acetic acid in plant cuticles: I. Sorption in the cuticular membrane and its components. Ecotoxicol Environ Saf 8:236–247

    Google Scholar 

  • Riederer M, Schönherr J (1986) Thermodynamic analysis of nonelectrolyte sorption in plant cuticles: The effects of concentration and temperature on sorption of 4-nitrophenol. Planta 169: 69–80.

    Article  CAS  Google Scholar 

  • Riederer M, Schönherr J (1988) Development of plant cuticles: fine structure and cutin composition of Clivia miniata Reg. leaves. Planta 174: 127–138.

    Article  CAS  Google Scholar 

  • Rogers CE (1985) Permeation of gases and vapours in polymers. In: Comyn J (ed) Polymer permeability. Elsevier Applied Science Publishers, London, New York, pp 11–74.

    Google Scholar 

  • Rogers CE, Stannett V, Szwarc M (1957) Permeability valves. Ind Eng Chem 49: 1933–1936.

    Article  CAS  Google Scholar 

  • Saxe H (1986) Stomatal-dependent and stomatal-independent uptake of NOx. New Phytol 103: 199–205.

    Article  CAS  Google Scholar 

  • Scherer JR, Bolton BA (1985) Water in polymer membranes. 5. On the existence of pores and voids. J Phys Chem 89: 3535–3540.

    Article  CAS  Google Scholar 

  • Schieferstein RH, Loomis WE (1959) Development of the cuticular layers in angiosperm leaves. Am J Bot 46: 625–635.

    Article  CAS  Google Scholar 

  • Schmidt HW, Mérida T, Schönherr J (1981) Water permeability and fine structure of cuticular membranes isolated enzymatically from leaves of Clivia miniata Reg. Z Pflanzenphysiol 105: 41–51.

    CAS  Google Scholar 

  • Schönherr J (1976a) Water permeability of isolated cuticular membranes: The effect of pH and cations on diffusion, hydrodynamic permeability and size of polar pores in the cutin matrix. Planta 128: 113–126.

    Article  Google Scholar 

  • Schönherr J (1976b) Water permeability of isolated cuticular membranes: The effect of cuticular waxes on diffusion of water. Planta 131: 159–164.

    Article  Google Scholar 

  • Schönherr J (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Lange OL, Nobel PS, Osmond CB (eds) Physiological plant ecology, vol 2, Encyclopedia of plant physiology, vol 12B, Springer Verlag, Berlin, Heidelberg, New York, pp 153–179.

    Google Scholar 

  • Schönherr J, Bukovac MJ (1978) Foliar penetration of succinic acid-2,2-dimethylhydrazide: Mechanisms and rate limiting step. Physiol Plant 42: 243–251.

    Article  Google Scholar 

  • Schönherr J, Huber R (1977) Plant cuticles are polyelectrolytes with isoelectric points around three. Plant Physiol 59: 145–150.

    Article  PubMed  Google Scholar 

  • Schönherr J, Lendzian KJ (1981) A simple and inexpensive method of measuring water permeability of isolated plant cuticular membranes. Z Pflanzenphysiol 102: 321–327.

    Google Scholar 

  • Schönherr J, Mérida T (1981) Water permeability of plant cuticular membranes: the effects of humidity and temperature on the permeability of non-isolated cuticles of onion bulb scales. Plant Cell Environ 4: 349–354.

    Article  Google Scholar 

  • Schönherr J, Riederer M (1986) Plant cuticles sorb lipophilic compounds during enzymatic isolation. Plant Cell Environ 9: 459–466.

    Article  Google Scholar 

  • Schönherr J, Riederer M (1989) Foliar penetration and accumulation of organic chemicals in plant cuticles. Rev Environ Contam Toxicol 108: 1–70.

    Google Scholar 

  • Schönherr J, Schmidt W (1979) Water permeability of plant cuticles. Dependence of permeability coefficients of cuticular transpiration on vapor pressure saturation deficit. Planta 144: 391–400.

    Article  Google Scholar 

  • Schönherr J, Ziegler H (1975) Hydrophobic cuticular ledges prevent water entering the air pores of liverwort of liverwort thalli. Planta 124: 51–60.

    Article  Google Scholar 

  • Schreiber L, Schönherr J (1990) Phase transitions and thermal expansion coefficients of plant cuticles. The effect of temperature on structure and function. Planta 182: 186–193.

    Article  Google Scholar 

  • Schroeter LC (1966) Sulfur dioxide. Applications in foods, beverges, and pharmaceuticals. Pergamon, Oxford.

    Google Scholar 

  • Schulze ED, Lange OL, Oren R (1989) Forest decline and acid rain Ecological Studies, vol 77. Springer Verlag, Heidelberg, New York.

    Google Scholar 

  • Scott FM (1950) Internal suberization of plant tissues. Bot Gaz 111: 378–394.

    Article  CAS  Google Scholar 

  • Sitte P, Rennier R (1963) Untersuchungen an cuticularen Zellwandschichten. Planta 60: 19–40.

    Article  CAS  Google Scholar 

  • Sowell JB, Koutnik DL, Lansing AJ (1982) Cuticular transpiration of whitebark pine (Pinus albicaulis) within a sierra nevada timberline ecotone, U.S.A. Arctic Alpine Res 14: 97–103.

    Article  Google Scholar 

  • Spedding DJ (1969) Uptake of sulphur dioxide by barley leaves at low sulphur dioxide concentrations. Nature 224: 1229–1230.

    Article  PubMed  CAS  Google Scholar 

  • Spedding DJ, Ziegler I, Hampp R, Ziegler H (1980) Effect of pH on the uptake of 35S-sulfur from sulfate, sulfite, and sulfide by isolated spinach chloroplasts. Z Pflanzenphysiol 96: 351–364.

    CAS  Google Scholar 

  • Stahl K (1990) Untersuchungen zum Austausch niedermolekularer organischer Verbindungen zwischen Atmosphäre und Pflanze. Doctoral diss., Technische Universität München.

    Google Scholar 

  • Stannett V (1968) Simple gases. In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, London, New York, Toronto, Sidney, San Francisco, pp 41–74.

    Google Scholar 

  • Stannett VT (1985) The permeability of plastic films and coated papers to gases and vapors. TAPPI J 68: 22–26.

    CAS  Google Scholar 

  • Stein WD (1981) Permeability of lipophilic molecules. In: Bonting SL, de Pont JJ (eds) Membrane transport. Elsevier/North Holland Biomedical Press, Amsterdam, pp 1–28.

    Google Scholar 

  • Tamm CO, Cowling EB (1977) Acidic precipitation and forest vegetation. Water Air Soil Pollut 7: 503–511.

    CAS  Google Scholar 

  • Tegelaar EW, de Leeuw JW, Largeau C, Derenne S, Schulten HR, Müller R, Boon JJ, Nip M, Sprenkels JCM (1989) Scope and limitations of several pyrolysis methods in the structural elucidation of a macromolecular plant constituent in the leaf cuticle of Agave americana L. J Anal Appl Pyrolysis 15: 29–54.

    Article  Google Scholar 

  • Thomas MD (1965) Photosynthesis: environmental and metabolic relationship. In: Steward FC (ed) Plant physiology, vol 4A. Academic Press, London, New York, pp 9–202.

    Google Scholar 

  • Tukey HB (1970) The leaching of substances from plants. Ann Rev Plant Physiol 21: 305–324.

    Article  CAS  Google Scholar 

  • Unsworth MH, Wilshaw JC (1989) Wet, occult and dry deposition of pollutants on forests. Agric For Meteorol 47: 221–238.

    Article  Google Scholar 

  • Urquhart AR, Williams AM (1924) J Textile Inst 15: T559.

    Article  Google Scholar 

  • Ott E, Spurlin HM, Graff in MW (ed) Cellulose and cellulose derivatives, 2nd edition, part I (1954). Interscience Publihsers, New York.

    Google Scholar 

  • Ursprung A (1925) Über das Eindringen von Wasser und anderen Flüssigkeiten in Interzellularen. Beih Bot Zentralbl 41: 15–40.

    Google Scholar 

  • van Krevelen DW (1976) Properties of polymers, 2nd edition. Elsevier Scientific Publishing Co, Amsterdam, Oxford, New York.

    Google Scholar 

  • Walles B, Nyman B, Aldén T (1973) On the ultrastructure of needles of Pinus sylvestres L.. Stud Forest Suecica 106: 1–26.

    Google Scholar 

  • Wattendorf J, Holloway PJ (1980) Studies on the ultrastructure and histochemistry of plant cuticles: the cuticular membrane of Agave americana L. in situ. Ann Bot 46: 13–28.

    Google Scholar 

  • Weigel HJ, Halbwachs G, Jäger HJ (1989) The effects of air pollutants on forest trees from a plant physiological view. Z PflKrankh PtlSchutz 96: 203–217.

    CAS  Google Scholar 

  • West DW, Gaff DF (1976) The effect of leaf water potential, leaf temperature and light intensity on leaf diffusion resistance and the transpiration of leaves of Malus sylvestris. Physiol Plant 38: 98–104.

    Article  Google Scholar 

  • Whitecross MI, Mercer FV (1972) Permeability of isolated Eucalyptus gummifera cuticle towards alcohols and amides. Aust J Bot 20: 1–7.

    Article  CAS  Google Scholar 

  • Winner WE, Mooney HA, Goldstein RA (1985) Sulfur dioxide and vegetation. University Press, Stanford.

    Google Scholar 

  • Woodhead S, Chapman RF (1986) Insect behaviour and the chemistry of plant surface waxes. In: Juniper B, Southwood R (eds) Insects and the plant cuticle. Edward Arnold, London.

    Google Scholar 

  • Zech W, Suttner T, Popp E (1985) Elemental analysis and physiological responses of forest trees in SO2-polluted areas of NE-Bavaria. Water Air Soil Poll 21: 175–183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Lendzian, K.J., Kerstiens, G. (1991). Sorption and Transport of Gases and Vapors in Plant Cuticles. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 121. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3196-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3196-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7828-3

  • Online ISBN: 978-1-4612-3196-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics