Skip to main content

Structure of the Mammalian Cochlea

  • Chapter
Comparative Hearing: Mammals

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 4))

Abstract

Two features distinguish mammalian hearing from auditory reception in fishes, amphibians, reptiles, and birds. First, the audible frequency range is significantly broader in mammals than in other vertebrate taxa due to the responsiveness of the mammalian ear to higher frequency sounds. Second, when compared with other vertebrates, mammals show considerably more species diversity in particular attributes of hearing such as the lower frequency limit of hearing, the upper frequency range of hearing, and the frequency of maximum sensitivity (Fay 1988). Some mammals, which might be termed hearing generalists, perceive a broad range of sound frequencies and show little variation in threshold sensitivity throughout a large portion of their hearing range. In contrast, other species, which could be called hearing specialists, respond to sounds within a more restricted bandwidth and generally display a greater sensitivity for particular frequencies, often those found within behaviorally relevant acoustic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashmore JF (1987) A fast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 388:323–347.

    PubMed  CAS  Google Scholar 

  • Assad JA, Shepherd GMG, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7:985–994.

    Article  PubMed  CAS  Google Scholar 

  • Bast TH, Anson BJ (1949) The Temporal Bone and the Ear. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Békésy G von (1952) DC resting potentials inside the cochlear partition. J Acoust Soc Am 24:72–76.

    Article  Google Scholar 

  • Békésy G von (1960) Experiments in Hearing. New York: McGraw-Hill Book Co.

    Google Scholar 

  • Bloom W, Fawcett DW (1975). A Textbook of Histology, 10th Ed. Philadelphia: W. B. Saunders Co.

    Google Scholar 

  • Bohne BA, Carr CD (1979) Location of structurally similar areas in chinchilla cochleas of different lengths. J Acoust Soc Am 66:411–414.

    Article  PubMed  CAS  Google Scholar 

  • Bosher SK, Warren RL (1968) Observations on the electrochemistry of the cochlear endolymph of the rat. Proc R Soc London B 171:227–247.

    Article  CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertran D, de Ribaupierre Y (1985). Evoked mechanical responses of isolated cochlear hair cells. Science 227:194–196.

    Article  PubMed  CAS  Google Scholar 

  • Brundin L, Flock Ã…, Canlon B (1989). Sound-induced motility of isolated cochlear outer hair cells is frequency specific. Nature 342:814–816.

    Article  PubMed  CAS  Google Scholar 

  • Brundin L, Flock Ã…, Khanna SM, Ulfendahl M (1992). The tuned displacement response of the hearing organ is generated by the outer hair cells. Neurosci 49:607–616.

    Article  CAS  Google Scholar 

  • Bruns V (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. I. Mechanical specializations of the cochlea. J Comp Physiol 106:77–86.

    Article  Google Scholar 

  • Bruns V (1979) Functional anatomy as an approach to frequency analysis in the mammalian cochlea. Verh Dtsch Zool Ges 1979:141–154.

    Google Scholar 

  • Bruns V (1980) Basilar membrane and its anchoring system in the cochlea of the greater horseshoe bat. Anat Embryol 161:29–50.

    Article  PubMed  CAS  Google Scholar 

  • Bruns V, Goldbach M (1980). Hair cells and tectorial membrane in the cochlea of the greater horseshoe bat. Anat Embryol 161:51–63.

    Article  PubMed  CAS  Google Scholar 

  • Bruns V, Müller M, Hofer W, Heth G, Nevo E (1988) Inner ear structure and electrophysiological audiograms of the subterranean mole rat, Spalax ehrenbergi. Hear Res 33:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Bruns V, Burda H, Ryan MJ (1989) Ear morphology of the frog-eating bat (Trachops cirrhosus, Family: Phyllostomidae): apparent specializations for low-frequency hearing. J Morphol 199:103–118.

    Article  Google Scholar 

  • Burda H, Ballast L, Bruns V (1988) Cochlea in old world mice and rats (Muridae). J Morphol 198:269–285.

    Article  PubMed  CAS  Google Scholar 

  • Canlon B, Brundin L, Flock Ã… (1988) Acoustic stimulation causes tonotopic alterations in the length of isolated outer hair cells from guinea pig hearing organ. Proc Natl Acad Sci USA 85:7033–7035.

    Article  PubMed  CAS  Google Scholar 

  • Cody AR, Russell IJ (1987) The response of hair cells in the basal turn of the guinea pig cochlea to tones. J Physiol 383:551–569.

    PubMed  CAS  Google Scholar 

  • Dannhof BJ, Bruns V (1991) The organ of Corti in the bat Hipposideros bicolor. Hear Res 53:253–268.

    Article  PubMed  CAS  Google Scholar 

  • Dallos P (1970) Low-frequency auditory characteristics: species dependence. J Acoust Soc Am 48:489–499.

    Article  PubMed  CAS  Google Scholar 

  • Dallos P (1985a) Response characteristics of mammalian cochlear hair cells. J Neuro-sci 5:1591–1608.

    CAS  Google Scholar 

  • Dallos P (1985b) The role of outer hair cells in cochlear function. In: Correia MJ, Perachico AA (eds) Contemporary Sensory Neurobiology. New York: Alan R. Liss, pp. 207–230.

    Google Scholar 

  • Dallos P (1988a) The cochlea and auditory nerve. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. New York: John Wiley and Sons, pp. 153–188.

    Google Scholar 

  • Dallos P (1988b) Cochlear neurobiology: revolutionary developments. ASHA June/July:50–56.

    Google Scholar 

  • Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585.

    PubMed  CAS  Google Scholar 

  • Dallos P, Evans BN, Hallworth R (1991) Nature of the motor element in the electro-kinetic shape changes of cochlear outer hair cells. Nature 350:155–157.

    Article  PubMed  CAS  Google Scholar 

  • DeRosier DJ, Tilney LG, Engelman E (1980) Actin in the inner ear: the remarkable structure of the stereocilium. Nature 287:291–296.

    Article  PubMed  CAS  Google Scholar 

  • Ehret G, Frankenreiter M (1977) Quantitative analysis of cochlear structures in the house mouse in relation to mechanisms of acoustical information processing. J Comp Physiol A 122:65–85.

    Article  Google Scholar 

  • Engström H, Ades HW, Hawkins JE (1962) Structure and functions of the sensory hairs of the inner ear. J Acoust Soc Am 34:1356–1363.

    Article  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay RR (1992) Structure and function in sound discrimination among vertebrates. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 229–263.

    Google Scholar 

  • Fernández C (1952) Dimensions of the cochlea (guinea pig). J Acoust Soc Am 24:519–523.

    Article  Google Scholar 

  • Flock Ã…, Strelioff D (1984) Studies on hair cells from isolated coils of the guinea pig cochlea. Hear Res 15:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernández C (1984) The vestibular system. In: Darien-Smith I (ed) Handbook of Physiology. Section 1: The Nervous System. Volume III. Sensory Processes, Part 2. Bethesda, MD: American Physiological Society, pp. 977–1022.

    Google Scholar 

  • Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356.

    Article  Google Scholar 

  • Greenwood DD (1962) Approximate calculation of the dimensions of traveling wave envelopes in four species. J Acoust Soc Am 34:1364–1369.

    Article  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605.

    Article  PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1992) Hearing and sound localization in blind mole rats (Spalax ehrenbergi). Hear Res 62:206–216.

    Article  PubMed  CAS  Google Scholar 

  • Henson MM, Henson OW (1991) Specializations for sharp tuning in the mustache bat: the tectorial membrane and spiral limbus. Hear Res 56:122–132.

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T (1976) Attachment of the inner sensory cell hairs to the tectorial membrane: A scanning electron microscopic study. Otorhinolaryngol 38:11–18.

    CAS  Google Scholar 

  • Hudspeth AJ, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells. Proc Natl Acad Sci USA 76:1506–1509.

    Article  PubMed  CAS  Google Scholar 

  • Iurato S (1962) Functional implications of the nature and submicroscopic structure of the tectorial and basilar membranes. J Acoust Soc Am 34:1386–1395.

    Article  Google Scholar 

  • Johnstone BM, Sellick PM (1972) The peripheral auditory apparatus. Q Rev Biophys 5:1–57.

    Article  PubMed  CAS  Google Scholar 

  • Kachar B, Brownell WE, Altschuler R, Fex J (1986) Electrokinetic shape changes of cochlear outer hair cells. Nature 322:365–368.

    Article  PubMed  CAS  Google Scholar 

  • Kiang NY-S, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kiang NY-S, Liberman MC, Gage JS, Northrop CC, Dodds LW, Oliver ME (1984) Afferent innervation of the mammalian cochlea. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative Physiology of Sensory Systems. Cambridge: Cambridge University Press, pp. 143–161.

    Google Scholar 

  • Kimura RS (1966) Hairs of the cochlear sensory cells and their attachment to the tectorial membrane. Acta Otolaryngol 61:55–72.

    Article  PubMed  CAS  Google Scholar 

  • Kronester-Frei A (1979) The effect of changes in endolymphatic ion concentrations on the tectorial membrane. Hear Res 1:81–94.

    Article  PubMed  CAS  Google Scholar 

  • Lay D (1972) The anatomy, physiology, functional significance, and evolution of specialized hearing organs of gerbilline rodents. J Morphol 138:41–120.

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC (1982) The cochlear frequency map for the cat: labeling auditory nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449.

    Article  PubMed  CAS  Google Scholar 

  • Lim DJ (1972) Fine morphology of the tectorial membrane: its relationship to the organ of Corti. Arch Otolaryngol 96:199–215.

    PubMed  CAS  Google Scholar 

  • Lim DJ (1980) Cochlear anatomy related to cochlear micromechanics. A review. J Acoust Soc Am 67:1686–1695.

    Article  PubMed  CAS  Google Scholar 

  • Lim DJ (1986) Functional structure of the organ of Corti: a review. Hear Res 22:117–146.

    Article  PubMed  CAS  Google Scholar 

  • Long GR (1977) Masked auditory thresholds from the bat, Rhinolophus ferrumequinum. J Comp Physiol A 116:247–255.

    Article  Google Scholar 

  • Long GR (1980) Some psychophysical measurements of frequency processing in the greater horseshoe bat. In: van der Brink G, Bilsen FH (eds) Psychophysical, Physiological, and Behavioral Studies in Hearing. Delft, The Netherlands: Delft University Press, pp. 132–135.

    Google Scholar 

  • Lowenstein O, Roberts TDM (1949) The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J Physiol (London) 110:392–415.

    CAS  Google Scholar 

  • Lowenstein O, Sand A (1940) The individual and integrated activity of the semicircular canals of the elasmobranch labyrinth. J Physiol (London) 99:89–101.

    CAS  Google Scholar 

  • Masterton B, Heffner HE, Ravizza R (1969) The evolution of human hearing. J Acoust Soc Am 45:966–985.

    Article  PubMed  CAS  Google Scholar 

  • Müller M (1991) Frequency representation in the rat cochlea. Hear Res 51:247–254.

    Article  PubMed  Google Scholar 

  • Müller M, Ott H, Bruns V (1991) Frequency representation and spiral ganglion cell density in the cochlea of the gerbil Pachyuromys duprasi. Hear Res 56:191–196.

    Article  PubMed  Google Scholar 

  • Müller M, Laube B, Burda H, Bruns V (1992) Structure and function of the cochlea of the african mole rat (Cryptomys hottentotus): evidence for a low frequency acoustic fovea. J Comp Physiol A 171:469–476.

    PubMed  Google Scholar 

  • Müller M, Wess FP, Bruns V (1993) Cochlear place-frequency map in the marsupial Monodelphis domestica. Hear Res 67:198–202.

    Article  PubMed  Google Scholar 

  • Nadol J (1988) Comparative anatomy of the cochlea and auditory nerve in mammals. Hear Res 34:253–266.

    Article  PubMed  Google Scholar 

  • Offner FF, Dallos P, Cheatham MA (1987) Positive endocochlear potential: mechanism of production by marginal cells of stria vascularis. Hear Res 29:117–124.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea pig organ of Corti and their possible relation to sensory transduction. Hear Res 15:103–112.

    Article  PubMed  CAS  Google Scholar 

  • Plassmann W, Brändie K (1992) Functional model of the auditory system in mammals and its evolutionary implications. In: Webster DB, Fay RR, Popper AN (eds) Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 637–653.

    Google Scholar 

  • Plassmann W, Peetz W, Schmidt M (1987) The cochlea of gerbilline rodents. Brain Behav Evol 30:82–101.

    Article  PubMed  CAS  Google Scholar 

  • Pollak GD (1992) Adaptations of basic structures and mechanisms in the cochlea and central auditory pathway of the mustache bat. In: Webster DB, Fay RR, Popper AN (eds) Evolutionary Biology of Hearing. New York: Springer-Verlag pp.751–778.

    Google Scholar 

  • Pujol R, Lenoir M, Ladrech S, Tribillac F, Rebillard G (1992) Correlation between the length of outer hair cells and the frequency coding of the cochlea. In: Cazals Y, Demany K, Horner K (eds) Auditory, Physiology and Perception, Advances in the Biological Sciences, Volume 83. New York: Pergamon Press, pp. 45–52.

    Google Scholar 

  • Raphael Y, Lenoir M, Wroblewski R, Pujol R (1991) The sensory epithelium and its innervation in the mole rat cochlea. J Comp Neurol 314:367–382.

    Article  PubMed  CAS  Google Scholar 

  • Retzius G (1884) Das Gehörorgan der Wirbeltiere. II. Das Gehörorgan der Reptilen, der Vögel und Säugetiere. Stockholm: Samson and Wallin.

    Google Scholar 

  • Rhode WS (1984) Cochlear mechanics. Ann Rev Physiol 46:231–246.

    Article  CAS  Google Scholar 

  • Rose J, Brugge J, Anderson D, Hind J (1967) Phase-locked response to low frequency tones in single auditory, nerve fibers of the squirrel monkey. J Neurophysiol 30: 769–793.

    PubMed  CAS  Google Scholar 

  • Rosowski JJ (1992) Hearing in transitional mammals: predictions from the middle ear anatomy and hearing capabilities of extant mammals. In: Webster DB, Fay RR, Popper AN (eds) Evolutionary Biology of Hearing: Neuroanatomy. New York: Springer-Verlag, pp. 615–631.

    Google Scholar 

  • Ryan A (1976) Hearing sensitivity of the mongolian gerbil, Meriones unguiculatus. J Acoust Soc Am 59:1222–1226.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo DK (1992) The auditory nerve: peripheral innervation, cell body morphology, and central projections. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 23–65.

    Google Scholar 

  • Saunders JC, Garfinkle TJ (1983) Peripheral anatomy and physiology I. In: Willot JF (ed) The Auditory Psychobiology of the Mouse. Springfield, IL: Charles C. Thomas, pp. 131–168.

    Google Scholar 

  • Smith CA (1981) Recent advances in structural correlates of auditory receptors. In: Autrum H, Ottosen D, Perl E, Schmidt RF (eds) Progress in Sensory Physiology. Berlin: Springer-Verlag, pp. 135–187.

    Google Scholar 

  • Smith CA, Tanaka K (1975) Some aspects of the structure of the vestibular apparatus. In: Naunton RF (ed) The Vestibular System. New York: Academic Press, pp. 3–20.

    Google Scholar 

  • Spoendlin H (1966) The organization of the cochlear receptor. Adv Otorhinolaryngol 13:1–227.

    CAS  Google Scholar 

  • Thorne PR, Carlisle L, Zajic G, Schacht J, Altschuler RA (1987) Differences in the distribution of F-actin in outer hair cells along the organ of Corti. Hear Res 30: 253–266.

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, DeRosier DJ, Mulroy MJ (1980) The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol 86:244–259.

    Article  PubMed  CAS  Google Scholar 

  • Vater M (1988) Cochlear physiology and anatomy in bats. In: Nachtigall PE, Moore PWB (eds) Animal Sonar, Processes and Performance. NATO ASI Series, Series A: Life Sciences, Volume 156. London: Plenum Press, pp. 225–241.

    Google Scholar 

  • Vater M, Lenoir M (1992) Ultrastructure of the horseshoe bat’s organ of Corti. I. Scanning electron microscopy. J Comp Neurol 318:367–379.

    Article  PubMed  CAS  Google Scholar 

  • Vater M, Feng AS, Betz M (1985) An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band. J Comp Physiol A 157:671–686.

    Article  PubMed  CAS  Google Scholar 

  • Voldrich L (1978) Mechanical properties of the basilar membrane. Acta Otolaryngol (Stockholm) 86:331–335.

    CAS  Google Scholar 

  • Wada T (1923) Anatomical and physiological studies on the growth of the inner ear in the albino rat. Am Anat Mem 10:1–74.

    Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 410–448.

    Google Scholar 

  • Webster DB, Webster M (1977) Auditory systems of Heteromyidae: cochlear diversity. J Morphol 152:153–170.

    Article  PubMed  CAS  Google Scholar 

  • Webster DB, Webster M (1980) Morphological adaptations of the ear in the rodent family Heteromyidae. Am Zool 20:247–254.

    Google Scholar 

  • West CD (1985) The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am 77:1091–1101.

    Article  PubMed  CAS  Google Scholar 

  • Wever EG, Lawrence M (1954) Physiological Acoustics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wever EG, McCormick JG, Palin J, Ridgway SH (1971a) The cochlea of the dolphin, Tursiops truncatus: general morphology. Proc Natl Acad Sci USA 68:2381–2385.

    Article  PubMed  CAS  Google Scholar 

  • Wever EG, McCormick JG, Palin J, Ridgway SH (1971b) The cochlea of the dolphin, Tursiops truncatus: the basilar membrane. Proc Natl Acad Sci USA 68:2708–2711.

    Article  PubMed  CAS  Google Scholar 

  • Wever EG, McCormick JG, Palin J, Ridgway SH (1971c) The cochlea of the dolphin, Tursiops truncatus: hair cells and ganglion cells. Proc Natl Acad Sci 68:2908–2912.

    Article  PubMed  CAS  Google Scholar 

  • Wright A (1984) Dimensions of the stereocilia in man and guinea pig. Hear Res 22:89–98.

    Article  Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers. J Acoust Soc Am 66:1381–1404.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki JJ (1986) Analysis of cochlear mechanics. Hear Res 22:155–169.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki JJ, Kletsky EJ (1979) Tectorial membrane: a possible effect on frequency analysis in the cochlea. Science 204:639–641.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Echteler, S.M., Fay, R.R., Popper, A.N. (1994). Structure of the Mammalian Cochlea. In: Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Mammals. Springer Handbook of Auditory Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2700-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2700-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7633-3

  • Online ISBN: 978-1-4612-2700-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics