Skip to main content

Underground Structures of Woody Plants in Mediterranean Ecosystems of Australia, California, and Chile

  • Chapter
Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and Australia

Part of the book series: Ecological Studies ((ECOLSTUD,volume 108))

Abstract

Interest in the possible evolutionary convergence has been the impetus for comparative studies of how organisms function in mediterranean ecosystems (Cody and Mooney 1978). For plants, stem architecture, seasonal growth patterns, nutrient relationships, and some physiological aspects have been examined to determine if convergence occurs under similar climatic constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott I, Dell B, Loneragan O (1989) The jarrah plant. In Dell B, Havel JJ, Malajczuk N (eds) The Jarrah Forest: A Complex Mediterranean Ecosystem. Kluwer Academic Publishers, Dordrecht, pp 41–51

    Google Scholar 

  • Atkinson D, Naylor D, Coldrick GA (1976) The effect of tree spacing on the apple root system. Hortic Res 16:89–105

    Google Scholar 

  • Auld TD (1990) The survival of juvenile plants of the resprouting shrub Angophora hispida (Myrtaceae) after a simulated low-intensity fire. Aust J Bot 38:255–260

    Google Scholar 

  • Axelrod DI (1975) Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Ann Missouri Bot Garden 62:280–334

    Google Scholar 

  • Bamber RK, Mullette KJ (1978) Studies of the lignotubers of Eucalyptus gummifera (Gaertn. and Hochr.). II. Anatomy. Aust J Bot 26:15–22

    Google Scholar 

  • Barnes, FJ (1979) Water relations in four species of Ceanothus. M.A. Thesis, California State University, San Jose. San Jose, CA

    Google Scholar 

  • Beadle NCW (1954) Soil phosphate and the delimitation of plant communities in eastern Australia. Ecology 35:370–375

    CAS  Google Scholar 

  • Beadle NCW (1968) Some aspects of the ecology and physiology of Australian xeromorphic plants. Aust J Sci 30:348–355

    Google Scholar 

  • Beckett PHT, Webster R (1971) Soil variability: a review. Soils Fertil 34:1–15

    Google Scholar 

  • Berntson GM (1992) A computer program for characterizing root system branching patterns. Plant Soil 140:145–149

    Google Scholar 

  • Blake TJ (1972) Studies on the lignotubers of Eucalyptus obliqua L’Herit. III. The effects of seasonal and nutritional factors on dormant bud development. New Phytol 71:327–334

    Google Scholar 

  • Blake TJ, Carrodus BB (1970) Studies on the lignotubers of Eucalyptus obliqua. L’Herit. New Phytol 69:1073–1079

    CAS  Google Scholar 

  • Bradstock RA, Myerscough PJ (1988) The survival and population response to frequent fires of two woody resprouters Banksia serrata and Isopogon amenonifolius. Aust J Bot 36:415–431

    Google Scholar 

  • Burns RE (1972) Environmental factors affecting root development and reserve carbohydrates of Bermuda grass cuttings. Agron J 64:44–45

    Google Scholar 

  • Callaway RM (1990) Effects of soil water distribution on the lateral root development of three species of California oaks. Am J Bot 77:1469–1475

    Google Scholar 

  • Canadell J, Rodà F (1991) Root biomass of Quercus ilex in a montane Mediterranean forest. Can J For Res 21:1771–1778

    Google Scholar 

  • Cannon WA (1914) Specialization in vegetation and in environment in California. Plant World 17:223–237

    Google Scholar 

  • Cannon WA (1949) A tentative classification of root systems. Ecology 30:542–548

    Google Scholar 

  • Carbon BA, Bartle GA, Murray AM, McPherson DK (1980) The distribution of root length, and the limits to flow of soil water to roots in a dry sclerophyll forest. For Sci 26:656–664

    Google Scholar 

  • Carr DJ, Jahnke R, Carr SGM (1983) Development of the lignotuber and plant form in Lehmannianae. Aust J Bot 31:629–643

    Google Scholar 

  • Carr DJ, Jahnke R, Carr SGM (1984a) Initiation, development and anatomy of lignotubers in some species of Eucalyptus. Aust J Bot 32:415–437

    Google Scholar 

  • Carr DJ, Jahnke R, Carr SGM (1984b) Surgical experiments on eucalypt lignotubers. Aust J Bot 32:439–447

    Google Scholar 

  • Carrodus BB, Blake TJ (1970) Studies on the lignotubers of Eucalyptus obliqua L’Herit New Phytol 69:1069–1072

    Google Scholar 

  • Chattaway MM (1958) Bud development and lignotuber formation in eucalypts. Aust J Bot 6:103–115

    Google Scholar 

  • Cody ML, Mooney HA (1978) Convergence versus nonconvergence in mediterranean ecosystems. Ann Rev Ecol Syst 9:265–321

    Google Scholar 

  • Cooper WS (1922) The broad-sclerophyll vegetation of California. An ecological study of the chaparral and its related communities. Carnegie Inst Wash Pub 319: 122 pp

    Google Scholar 

  • Crick JC, Grime JP (1987) Morphological plasticity and mineral nutrient capture in two herbaceous species of contrasted ecology. New Phytol 107:403–414

    Google Scholar 

  • Crombie DS, Tippett JT, Hill TC (1988) Dawn water potential and root depth of trees and understorey species in south-western Australia. Aust J Bot 36:621–631

    Google Scholar 

  • Curl EA, Truelave B (1986) The structure and function of roots. In Curl EA, Truelave (eds) The Rhizosphere. Adv Agr Sci 15:19–54

    Google Scholar 

  • Davis CB (1972) Comparative ecology of six members of the Arctostaphylos andersonii complex. Ph.D. dissertation, U California, Davis

    Google Scholar 

  • Davis EA (1970) Root system of shrub live oak in relation to water yield by chaparral. J Ariz Acad Sci 12:62

    Google Scholar 

  • Davis EA (1978) Root system of shrub live oak in relation to water yield by chaparral. Hydrol Water Resour Ariz Southwest 7:241–248

    Google Scholar 

  • Davis EA, Pase CP (1977) Root system of shrub live oak: implications for water yield in Arizona chaparral. J Soil Water Cons 32:174–180

    Google Scholar 

  • Davis SD, Mooney HA (1986) Water use patterns of four co-occurring chaparral shrubs. Oecologia 70:172–177

    Google Scholar 

  • Dell B, Barile JR, Tacey WH (1983) Root occupation and root channels of jarrah forest subsoils. Aust J Bot 31:615–627

    Google Scholar 

  • Dell B, Jones S, Wallace IM (1985) Phosphorus accumulation by lignotubers of jarrah (Eucalyptus marginata Donn ex Sm.) seedlings grown in a range of soils. Plant Soil 86:225–232

    CAS  Google Scholar 

  • DeSouza J, Silka PA, Davis SD (1986) Comparative physiology of burned and unburned Rhus laurina after chaparral wildfire. Oecologia 71:63–68

    Google Scholar 

  • Dodd J, Heddle EM, Pate JS, Dixon KW (1984) Rooting patterns of sandplain plants and their functional significance. In Pate JS, Beard JS (eds) Kwongan: Plant Life of the Sandplain. U Western Australia Press, Nedlands, pp 146–177

    Google Scholar 

  • Feldman LJ (1984) Regulation of root development. Ann Rev Plant Physiol 35:223–242

    CAS  Google Scholar 

  • Feldman LJ (1988) The habits of roots. BioScience 38:612–618

    PubMed  CAS  Google Scholar 

  • Fitter AH, Stickland TR (1992) Architectural analysis of plant root systems. III. Studies on plants under field conditions. New Phytol 121:243–248

    Google Scholar 

  • Flinn MA, Wein RW (1977) Depth of underground plant organs and theoretical survival during fire. Can J Bot 55:2550–2554

    Google Scholar 

  • Florence RG (1981) The biology of the eucalypt forest. In Pate JS, McComb AJ (eds) The Biology of Australian plants. U Western Australia Press, Nedlands, Western Australia, pp 147–180

    Google Scholar 

  • Frazier C. (1993) An ecological study of hybridization between chaparral shrubs of contrasting life histories. M.S. Thesis, San Diego State U, San Diego, CA

    Google Scholar 

  • Garland H, Marion L (1960) California manzanita for smoking pipes. USDA For Serv PSW Misc. Paper 53. Pacific Southwest For and Range Expt Sta, Berkeley, CA

    Google Scholar 

  • Giliberto J, Estay H (1978) Seasonal water stress in some Chilean matorral shrubs. Bot Gaz 139:236–260

    Google Scholar 

  • Gill AM (1981) Fire adaptive traits of vascular plants. In Mooney HA, Bonnicksen TM, Christensen NL, Lotan JE, Reiners WA (eds) Fire Regimes and Ecosystem Properties. Gen Tech Rep WO-26, pp 208–230

    Google Scholar 

  • Gill DS, Mahall BE (1986) Quantitative phenology and water relations of an evergreen and a deciduous chaparral shrub. Ecol Mono 56:127–143

    Google Scholar 

  • Grant Taylor TL, Rafter TA (1963) N.Z. natural radiocarbon measurements I–V. Radiocarbon 5:118–161

    Google Scholar 

  • Griffin JR (1971) Oak regeneration in the upper Carmel Valley, California. Ecology 52:862–868

    Google Scholar 

  • Griffin JR (1973) Xylem sap tension in three woodland oaks of central California. Ecology 54:152–159

    Google Scholar 

  • Hanes TL (1965) Ecological studies on two closely related chaparral shrubs in southern California. Ecol Mono 35:213–235

    Google Scholar 

  • Harrison AT, Small E, Mooney HA (1971) Drought relationships and distribution of two mediterranean-climate California plant communities. Ecology 52:869–875

    Google Scholar 

  • Hart JJ, Radosevich SR (1987) Water relations of two California chaparral shrubs. Am J Bot 74:371–384

    Google Scholar 

  • Hellmers H, Horton JS, Juhren G, O’Keefe J (1955) Root systems of some chaparral plants in southern California. Ecology 36:667–678

    Google Scholar 

  • Hnatiuk RJ, Hopkins AJM (1980) Western Australian species-rich kwongan (sclerophyllous shrubland) affected by drought. Aust J Bot 28:573–585

    Google Scholar 

  • Hodgkinson KC (1992) Water relations and growth of shrubs before and after fire in a semi-arid woodland. Oecologia 90:467–473

    Google Scholar 

  • Hoffmann A, Kummerow J (1978) Root studies in the Chilean matorral. Oecologia 32:57–69

    Google Scholar 

  • Incoll WD (1969) Root excavation of Eucalyptus regnans. Res Act For Com Vict 69:15–16

    Google Scholar 

  • Jacobs MR (1955) Growth habits of the eucalypts. Commonw For Tim Bur: Canberra

    Google Scholar 

  • Jahnke R, Carr DJ, Carr SGM (1983) Lignotuber development and growth parameters in Eucalyptus camaldulensis (Dehnh.): effects of phosphorus and nitrogen levels. Aust J Bot 31:283–292

    Google Scholar 

  • James S (1984) Lignotubers and burls—their structure, functions and ecological significance in Mediterranean ecosystems. Bot Rev 50:225–266

    Google Scholar 

  • Jepson WL (1916) Regeneration in manzanita. Madroño 1:3–11

    Google Scholar 

  • Johnston CD, Hurle DH, Hudson DR, Height MI (1983) Water Movement Through Preferred Paths in Lateritic Profiles of the Darling Plateau, Western Australia. CSIRO, Aust Div Groundwater Res Tech Pap No 1, 4 pp

    Google Scholar 

  • Kerr LR (1925) The lignotubers of eucalypt seedlings. Proc Roy Soc Victoria 37:79–97

    Google Scholar 

  • Kimber PC (1974) The root system of jarrah (Eucalyptus marginata). For Dept, W.A. Res Paper 10, Perth

    Google Scholar 

  • Kummerow J (1980) Adaptation of roots in water-stressed native vegetation. In Turner NC, Kramer PJ (eds) Adaptation of Plants to Water and High Temperature Stress. John Wiley & Sons, pp 57–73

    Google Scholar 

  • Kummerow J (1981) Structure of roots and root systems. In di Castri F, Goodall DW, Specht RL (eds) Mediterranean-Type Shrublands. Ecosystems of the World, Vol 11. Elsevier Scientific Publishing, Amsterdam, pp 269–288

    Google Scholar 

  • Kummerow J, Ellis BA (1989) Structure and function in chaparral shrubs. In Keeley SC (ed) The California chaparral: Paradigms reexamined. Sciences series No. 34. Nat Hist Mus LA, pp 141–150

    Google Scholar 

  • Kummerow J, Mangan R (1981) Root systems in Quercus dumosa Nutt. dominated chaparral in southern California. Acta Oecol/Oecol Plant 2:177–188

    Google Scholar 

  • Kummerow J, Wright CD (1988) Root distribution and resource availability in mixed chaparral of southern California. In Proc 5th Int Conf Medi Ecosys, pp 225–259 (Int U Bio Sci: Paris)

    Google Scholar 

  • Kummerow J, Krause D, Jow W (1977) Root systems of chaparral shrubs. Oecologia 29:163–177

    Google Scholar 

  • Lacey CJ (1983) Development of large plate-like lignotubers in Eucalyptus botryoides Sm. in relation to environmental factors. Aust J Bot 31:105–118

    Google Scholar 

  • Lamont BB (1983) Strategies for maximizing nutrient uptake in two Mediterranean ecosystems of low nutrient status. In Kruger F, Mitchell DT, Jarvis JUM (eds) Mediterranean-Type Ecosystems. The Role of Nutrients. Springer-Verlag, Berlin, pp 246–273

    Google Scholar 

  • Lewis DC, Burgy RH (1964) The relationship between oak tree roots and groundwater in fractured rock as determined by tritium tracing. J Geophys Res 69:2579–2588

    Google Scholar 

  • Lopez EN (1983) Contribution of stored nutrients to post-fire regeneration of Quercus dumosa. M.S. thesis, California State U, Los Angeles, CA

    Google Scholar 

  • Low AB (1983) Phytomass and major nutrient pools in an 11-year post-fire coastal fynbos community. S Afr J Bot 2:98–104

    Google Scholar 

  • Mahall BE, Callaway RM (1992) Root communication mechanisms and intracommunity distributions of two Mojave desert shrubs. Ecology 73:2145–2151

    Google Scholar 

  • Malanson, GP, Westman WE (1985) Postfire succession in California coastal sage scrub: the role of continual basal sprouting. Am Mid Nat 113:309–317

    Google Scholar 

  • Matsuda K, McBride JR (1986) Difference in seedling growth morphology as a factor in the distribution of three oaks in central California. Madroño 33:207–216

    Google Scholar 

  • McMaster GS, Jow WM, Kummerow J (1982) Response of Adenostoma fasciculatum and Ceanothus greggii chaparral to nutrient additions. J Ecol 70:745–756

    Google Scholar 

  • Mesléard F, Lepart J (1989) Continuous basal sprouting from a lignotuber: Arbutus unedo L. and Erica arborea L., as woody Mediterranean examples. Oecologia 80:127–131

    Google Scholar 

  • Miller PC, Poole DK (1979) Patterns of water use by shrubs in southern California. For Sci 25:84–98

    Google Scholar 

  • Miller PC, Ng E (1977) Root:shoot biomass ratios in shrubs in southern California and central Chile. Madroño 24:215–223

    Google Scholar 

  • Molinas ML, Verdaguer D (1993a) Lignotuber ontogeny in the cork-oak (Quercus suber, Fagaceae). I. Late embryo. Am J Bot 80:172–181

    Google Scholar 

  • Molinas ML, Verdaguer D (1993b) Lignotuber ontogeny in the cork-oak (Quercus suber; Fagaceae). II. Germination and young seedling. Am J Bot 80:182–191

    Google Scholar 

  • Montenegro G, Avila G, Schatte P (1983) Presence and development of lignotubers in shrubs of the Chilean matorral. Can J Bot 61:1804–1808

    Google Scholar 

  • Mooney HA (1989) Chaparral physiological ecology—paradigms revisited. In Keeley SC (ed) The California Chaparral. Paradigms Reexamined. Sci Ser No. 34. Nat Hist Mus LA County, Los Angeles, CA pp 85–90

    Google Scholar 

  • Mooney HA, Chu C (1974) Seasonal carbon allocation in Heteromeles arbutifolia, a California evergreen shrub. Oecologia 14:295–306

    Google Scholar 

  • Mooney HA, Dunn EL (1970) Convergent evolution of Mediterranean-climate evergreen sclerophyll shrubs. Evolution 24:292–303

    Google Scholar 

  • Mooney HA, Parsons DV, Kummerow J (1974) Plant development in mediterranean climates. In Lieth H (ed) Phenology and Seasonality Modeling. Springer-Verlag, Berlin, pp 255–267

    Google Scholar 

  • Morrow PA, Mooney HA (1974) Drought adaptations in two California evergreen sclerophylls. Oecologia 15:205–222

    Google Scholar 

  • Mullette KJ (1978) Studies of the lignotubers of Eucalyptus gummifera (Gaertn. & Hochr.). I. The nature of the lignotuber. Aust J Bot 26:9–13

    Google Scholar 

  • Mullette KJ, Bamber RK (1978) Studies of the lignotubers of Eucalyptus gummifera (Gaertn. & Hochr.). III. Inheritance and chemical composition. Aust J Bot 26: 23–28

    CAS  Google Scholar 

  • Noble IR (1984) Mortality of lignotuberous seedlings of Eucalyptus species after an intense fire in montane forest. Aust J Ecol 9:47–50

    Google Scholar 

  • Nobs ME (1963) Experimental studies on species relationships in Ceanothus. Carnegie Inst Wash Pub No 623

    Google Scholar 

  • O’Brien TP (1989) The impact of severe frost. In Noble JC, Bradstock RA (eds) Mediterranean Landscapes in Australia. CSIRO, Australia, pp 181–188

    Google Scholar 

  • Oppenheimer HR (1956) Pénétration active des racines de buissons méditerranéens dans les roches calcaires. Bull Res Counc Israel. D Bot. 5:219–222

    Google Scholar 

  • Oppenheimer HR (1960) Adaptation to drought: xerophytism. Arid Zone Res XV: 105–138

    Google Scholar 

  • Orshan G, Montenegro G, Avila G, Aljaro ME, Walckowiak A, Mujica AM (1984) Plant growth forms of Chilean matorral. A monocharacter growth form analysis along an altitudinal transect from sea level to 2000 M.A.S.L. Bull Soc Bot Fr 131, Actual Bot, (2/3/4): 411–425

    Google Scholar 

  • Orshansky G (1951) Ecological studies on lithophytes. Palest J Bot Jerusalem 5:119–128

    Google Scholar 

  • Pearson RW (1974) Significance of rooting pattern to crop production and some problems of root research. In Carson WE (ed) The Plant Root and Its Environment. U Press, Charlottesville, pp 247–270

    Google Scholar 

  • Plumb KA, Gosting VA (1973) Origin of Australian bauxite deposits. Bureau of Mineral Resources, Geology and Geophysics. Aust Dept Minerals Energy. Record 1973/156.

    Google Scholar 

  • Poole DK, Miller PC (1975) Water relations of selected species of chaparral and coastal sage communities. Ecology 56:1118–1128

    Google Scholar 

  • Poole DK, Miller PC (1978) Water related characteristics of some evergreen sclerophyll shrubs in central Chile. Oecol Plant 13:289–299

    Google Scholar 

  • Pryor LD (1976) The Biology of Eucalypts. Edward Arnold, London

    Google Scholar 

  • Richards JH (1986) Root form and depth distribution in several biomes. In Carlisle D, Berry WL, Kaplan IR, Watterson JR (eds) Mineral Exploration: Biological Systems and Organic Matter. Prentice-Hall, Englewood Cliffs, NJ, pp 83–97

    Google Scholar 

  • Riveros F, Hoffmann A, Avila G, Aljaro ME, Araya S, Hoffmann AE, Montenegro G (1976) Comparative morphological and ecophysiological aspects of two sclerophyllous Chilean shrubs. Flora 165:223–234

    Google Scholar 

  • Rowe PB, Coiman EA (1951) Disposition of rainfall in two mountain areas of California. USDA Tech Bull 1048, 84 pp

    Google Scholar 

  • Rundel PW, Baker GA, Parsons DJ, Stohlgren TJ (1987) Postfire demography of resprouting and seedling establishment by Adenostoma fasciculatum in the California chaparral. In Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant Response to Stress. Springer-Verlag, Berlin, pp 575–596

    Google Scholar 

  • Saunier RE, Wagle RF (1967) Factors affecting the distribution of shrub live oak (Quercus turbinella Greene). Ecology 48:35–41

    Google Scholar 

  • Specht RL (1963) Dark Island heath (Ninety-Mile Plain, South Australia). VII. The effect of fertilizers on composition and growth. 1950–1960. Aust J Bot 11:67–94

    Google Scholar 

  • Specht RL (1979) The sclerophyllous (heath) vegetation of Australia: the eastern and central states. In: Specht RL (ed) Ecosystems of the World. Heathlands and Related Shrublands. Elsevier, Amsterdam, pp 125–210

    Google Scholar 

  • Specht RL (1981a) Mallee ecosystems in southern Australia. In di Castri F, Goodall DW, Specht RL (eds) Mediterranean-Type Shrublands. Elsevier, Amsterdam, pp 203–231

    Google Scholar 

  • Specht RL (1981b) The water relations of heathlands: morphological adaptations to drought. In Specht RL (ed) Heathlands and Related Shrublands: Analytical Studies. Elsevier Scientific, Amsterdam, pp 123–129

    Google Scholar 

  • Specht RL, Rayson P (1957) Dark Island Heath (Ninety-Mile Plain, South Australia). III. The root systems. Aust J Bot 5:103–114

    Google Scholar 

  • Stock, WD, van der Heyden F, Lewis OAM (1992) Plant structure and function. In Cowling R (ed) The Ecology of Fynbos. Oxford U Press, Cape Town. pp 226–240

    Google Scholar 

  • van Noort AC (1960) The development of jarrah regeneration. For Dep W.A. Bull. 65:3–12

    Google Scholar 

  • Wellington AB, Polach HA, Noble IR (1979) Radiocarbon dating of lignotubers from mallee forms of Eucalyptus. Search 10:282–283

    CAS  Google Scholar 

  • Wright AD (1928) An ecological study of Baccharis pilularis. M.S. thesis, U California, Berkeley

    Google Scholar 

  • Wright CD (1987) The relief of the soil-rock interface and its effect on plant cover in southern California chaparral. M.S. thesis. San Diego State U, San Diego, CA

    Google Scholar 

  • Zammit C (1988) Dynamics of resprouting in the lignotuberous shrub Banksia oblongifolia. Aust J Ecol 13:311–320

    Google Scholar 

  • Zimmer WJ, Grose RJ (1958) Root systems and root/shoot ratios of seedlings of some Victorian eucalypts. Aust For 22:13–18

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Canadell, J., Zedler, P.H. (1995). Underground Structures of Woody Plants in Mediterranean Ecosystems of Australia, California, and Chile. In: Arroyo, M.T.K., Zedler, P.H., Fox, M.D. (eds) Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and Australia. Ecological Studies, vol 108. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2490-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2490-7_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7560-2

  • Online ISBN: 978-1-4612-2490-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics