Skip to main content

Graphene for Transparent Electrodes and Organic Electronic Devices

  • Chapter
  • First Online:
Organic Solar Cells

Part of the book series: Green Energy and Technology ((GREEN))

  • 5245 Accesses

Abstract

Graphene has been regarded as a promising material in organic electronics owing to its outstanding electronic, optical, thermal, and mechanical properties. In this chapter, first, we summarize and discuss the application of graphene as transparent electrode in organic photovoltaic (OPV) cells and organic light emitting diodes (OLED). Improving the conductivity of graphene without compromising the transparency and tuning its work function to match the interface and/or active materials are proposed to focus on the future study for graphene-based transparent electrode. Then, the application of graphene as acceptor material in OPV has been addressed. The factors of size, energy level, and functionalization of graphene should be considered first. Last, graphene-based all-carbon electronics have been introduced, which indicates that graphene exhibits great potential for fabricating the highly demanded all-carbon, flexible devices and electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  2. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622

    Article  Google Scholar 

  3. Liu Q, Liu ZF, Zhang XY, Zhang N, Yang LY, Yin SG, Chen Y (2008) Organic photovoltaic cells based on an acceptor of soluble graphene. Appl Phys Lett 92:223303

    Article  Google Scholar 

  4. Liu ZF, Liu Q, Huang Y, Ma YF, Yin SG, Zhang XY, Sun W, Chen YS (2008) Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater 20:3924–3930

    Article  Google Scholar 

  5. Liu Q, Liu ZF, Zhong XY, Yang LY, Zhang N, Pan GL, Yin SG, Chen Y, Wei J (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater 19:894–904

    Article  Google Scholar 

  6. Wu JB, Agrawal M, Becerril HA, Bao Z, Liu ZF, Chen Y, Peumans P (2010) Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4:43–48

    Article  Google Scholar 

  7. Matyba P, Yamaguchi H, Eda G, Chhowalla M, Edman L, Robinson ND (2010) Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4:637–642

    Article  Google Scholar 

  8. Di CA, Wei DC, Yu G, Liu YQ, Guo YL, Zhu DB (2008) Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater 20:3289–3293

    Article  Google Scholar 

  9. Pang SP, Tsao HN, Feng XL, Müllen K (2009) Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Adv Mater 21:3488–3491

    Article  Google Scholar 

  10. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  Google Scholar 

  11. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  12. Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties and applications. Small 7:1876–1902

    Article  Google Scholar 

  13. Hu YH, Wang H, Hu B (2010) Thinnest two-dimensional nanomaterial-graphene for solar energy. ChemSusChem 3:782–796

    Article  Google Scholar 

  14. Liang MH, Luo B, Zhi LJ (2009) Application of graphene and graphene-based materials in clean energy-related devices. Int J Energy Res 33:1161–1170

    Article  Google Scholar 

  15. Sun YQ, Wu QO, Shi GQ (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132

    Article  Google Scholar 

  16. Wassei JK, Kaner RB (2010) Graphene, a promising transparent conductor. Mater Today 13:52–59

    Article  Google Scholar 

  17. Pang S, Hernandez Y, Feng X, Müllen K (2011) Graphene as transparent electrode material for organic electronics. Adv Mater 23:2779–2795

    Article  Google Scholar 

  18. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  19. Forbeaux I, Themlin JM, Debever JM (1998) Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys Rev B 58:16396–16406

    Article  Google Scholar 

  20. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  21. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  Google Scholar 

  22. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 2:2392–2415

    Article  Google Scholar 

  23. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotech 4:217–224

    Article  Google Scholar 

  24. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470

    Article  Google Scholar 

  25. Xu Y, Long G, Huang L, Huang Y, Wan X, Ma Y, Chen Y (2010) Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 48:3308–3311

    Article  Google Scholar 

  26. Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302

    Article  Google Scholar 

  27. Eda G, Lin YY, Miller S, Chen CW, Su WF, Chhowalla M (2008) Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett 92:23305

    Article  Google Scholar 

  28. Yin ZY, Sun SY, Salim T, Wu SX, Huang XA, He QY, Lam YM, Zhang H (2010) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4:5263–5268

    Article  Google Scholar 

  29. Geng JX, Liu LJ, Yang SB, Youn SC, Kim DW, Lee JS, Choi JK, Jung HT (2010) A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension. J Phys Chem C 114:14433–14440

    Article  Google Scholar 

  30. De Arco LG, Zhang Y, Kumar A, Zhou CW (2009) Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE T Nanotechnol 8:135–138

    Article  Google Scholar 

  31. Yu QK, Lian J, Siriponglert S, Li H, Chen YP, Pei SS (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103

    Article  Google Scholar 

  32. Reina A, Jia XT, Ho J, Nezich D, Son HB, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Article  Google Scholar 

  33. Wang Y, Chen XH, Zhong YL, Zhu FR, Loh KP (2009) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95:063302

    Article  Google Scholar 

  34. De Arco LG, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou CW (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873

    Article  Google Scholar 

  35. Wang Y, Tong SW, Xu XF, Özyilmaz B, Loh KP (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater 23:1514–1518

    Article  Google Scholar 

  36. Choe M, Lee BH, Jo G, Park J, Park W, Lee S, Hong WK, Seong MJ, Kahng YH, Lee K, Lee T (2010) Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org Electron 11:1864–1869

    Article  Google Scholar 

  37. Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X, Chen Y (2009) Hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2:343–348

    Article  Google Scholar 

  38. Dai B, Fu L, Liao L, Liu N, Yan K, Chen Y, Liu Z (2011) High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res 4:434–439

    Article  Google Scholar 

  39. Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9:1949–1955

    Article  Google Scholar 

  40. Wildoeer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62

    Article  Google Scholar 

  41. Huang JH, Fang JH, Liu CC, Chu CW (2011) Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics. ACS Nano 5:6262–6271

    Article  Google Scholar 

  42. Jo G, Na SI, Oh SH, Lee S, Kim TS, Wang G, Choe M, Park W, Yoon J, Kim DY, Kahng YH, Lee T (2010) Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Appl Phys Lett 97:213301

    Article  Google Scholar 

  43. Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923

    Article  Google Scholar 

  44. Chen JW, Cao Y (2009) Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res 42:1709–1718

    Article  Google Scholar 

  45. Anthony JE (2011) Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem Mater 23:583–590

    Article  Google Scholar 

  46. Liu YX, Summers MA, Scully SR, McGehee MD (2006) Resonance energy transfer from organic chromophores to fullerene molecules. J Appl Phys 99:093521

    Article  Google Scholar 

  47. He YJ, Li YF (2011) Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys 13:1970–1983

    Article  Google Scholar 

  48. Brunetti FG, Gong X, Tong M, Heeger AJ, Wudl F (2010) Strain and huckel aromaticity: driving forces for a promising new generation of electron acceptors in organic electronics. Angew Chem Int Ed 49:532–536

    Article  Google Scholar 

  49. Brunetti FG, Kumar R, Wudl F (2010) Organic electronics from perylene to organic photovoltaics: painting a brief history with a broad brush. J Mater Chem 20:2934–2948

    Article  Google Scholar 

  50. Hill CM, Zhu Y, Pan S (2011) Fluorescence and electroluminescence quenching evidence of interfacial charge transfer in poly(3-hexylthiophene): graphene oxide bulk heterojunction photovoltaic devices. ACS Nano 5:942–951

    Article  Google Scholar 

  51. Li Y, Hu Y, Zhao Y, Shi GQ, Deng LE, Hou YB, Qu LT (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780

    Article  Google Scholar 

  52. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133:9960–9963

    Article  Google Scholar 

  53. Becerril HA, Stoltenberg RM, Tang ML, Roberts ME, Liu ZF, Chen Y, Kim DH, Li BL, Lee SY, Bao Z (2010) Fabrication and evaluation of solution-processed reduced graphene oxide electrodes for p- and n-channel bottom-contact organic thin-film transistors. ACS Nano 4:6343–6352

    Article  Google Scholar 

  54. Chen Y, Xu Y, Zhao K, Wan X, Deng J, Yan W (2010) Towards flexible all-carbon electronics: flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes. Nano Res 3:675–684

    Google Scholar 

  55. Lee YY, Tu KH, Yu CC, Li SS, Hwang JY, Lin CC, Chen KH, Chen LC, Chen CW (2011) Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. ACS Nano 5:6564–6570

    Article  Google Scholar 

  56. Cox M, Gorodetsky A, Kim B, Kim KS, Jia Z, Kim P, Nuckolls C, Kymissis I (2011) Single-layer graphene cathodes for organic photovoltaics. Appl Phys Lett 98:123303

    Article  Google Scholar 

  57. Liang J, Chen Y, Xu Y, Liu Z, Zhang L, Zhao X, Zhang X, Tian J, Huang Y, Ma Y, Li F (2011) Toward all-carbon electronics: fabrication of graphene-based flexible electronic circuits and memory cards using maskless laser direct writing. Acs Appl Mater Interfaces 2:3310–3317

    Article  Google Scholar 

  58. Huang L, Huang Y, Liang J, Wan X, Chen Y (2011) Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res 4:675–684

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the NSFC (Grants 50933003, 50902073 and 50903044), MOST (Grants 2009AA032304, 2011CB932602 and 2011DFB50300) and NSF of Tianjin City (Grant 10ZCGHHZ00600)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Wan, X., Long, G., Chen, Y. (2013). Graphene for Transparent Electrodes and Organic Electronic Devices. In: Choy, W. (eds) Organic Solar Cells. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4823-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4823-4_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4822-7

  • Online ISBN: 978-1-4471-4823-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics