Skip to main content

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

We present preliminary results from quantitative genetic analyses of tooth size variation in two outbred pedigreed populations, baboons and mice. These analyses were designed to test the dental field theory as proposed by Butler (1939), that there are three fields within the dentition: incisor, canine, and molar. Specifically we estimated the genetic correlation between pairs of linear size measurements. Results from the baboon analyses suggest that there may also be a premolar field that is only partially independent of the molar field proposed by Butler (1939). Analyses of the mouse data indicate that for mice, size variation in the incisors appears to be genetically independent of molar size. If the field theory is correct, future analyses on incisor data for the baboons will return similar results of genetic independence. Circumstantial evidence from the fossil record suggests that there will be at least some degree of independence between the anterior and postcanine dentitions of primates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almasy L, Blangero J., 1998. Multipoint quantitative-trait linkage analysis in general pedigrees. American Journal of Human Genetics 62, 1198–1211.

    Article  Google Scholar 

  • Asfaw, B., White, T., Lovejoy, C.O., Latimer, B., Simpson, S.,Suwa, G., 1999. Australopithecus garhi: a new species ofearly hominid from Ethiopia. Science 284, 629–635.

    Article  Google Scholar 

  • Bateson, W., 1894. Material for the Study of Variation,Treated with Special Regard to Discontinuity in the Origin ofSpecies. Macmillan, London.

    Book  Google Scholar 

  • Boehnke, M., Moll, P.P., Kottke, B.A., Weidman, W.H., 1987. Partitioning the variability of fasting plasma glucose levels inpedigrees. Genetic and environmental factors. American Journal ofEpidemiology 125, 679–689.

    Google Scholar 

  • Butler, P.M., 1939. Studies of the mammalian dentition –differentiation of the postcanine dentition. Proceedings of theZoological Society of London, Series B 109, 1–36.

    Google Scholar 

  • Cobourne, M.T., Sharpe, P.T., 2003. Tooth and jaw: molecularmechanisms of patterning in the first branchial arch. Archives ofOral Biology 48, 1–14.

    Article  Google Scholar 

  • Dahlberg, A.A., 1945. The changing dentition of man. Journal of the American Dental Association 32, 676–690.

    Article  Google Scholar 

  • Depew, M.J., Lufkin, T., Rubenstein, J.L., 2002. Specification ofjaw subdivisions by Dlx genes. Science 298, 381–385.

    Article  Google Scholar 

  • Dyke, B., 1996. PEDSYS: A Pedigree Database Management System Users Manual. Population Genetics Laboratory, Department of Genetics, Southwest Foundation for Biomedical Research, SanAntonio, TX

    Google Scholar 

  • Hlusko, L.J., Maas, M.L., Mahaney, M.C., 2004a. Statistical geneticsof molar cusp patterning in pedigreed baboons: Implications forprimate dental development and evolution. Molecular andDevelopmental Evolution (Journal of Experimental Zoology) 302B,268–283.

    Google Scholar 

  • Hlusko, L.J., Suwa, G., Kono, R., Mahaney, M. C., 2004b. Geneticsand the evolution of primate enamel thickness: a baboon model. American Journal of Physical Anthropology 124, 223–233.

    Article  Google Scholar 

  • Hopper, J.L., Mathews, J.D., 1982. Extensions to multivariatenormal models for pedigree analysis. Annals of Human Genetics 46, 373–383.

    Article  Google Scholar 

  • Huxley, J.S., de Beer, G.R., 1934. The Elements ofExperimental Embryology. Cambridge University Press, Cambridge.

    Google Scholar 

  • James, C.T., Ohazama A., Tucker A.S., and Sharpe P.T., 2002. Toothdevelopment is independent of a Hox patterning programme. Developmental Dynamics 225, 332–335.

    Article  Google Scholar 

  • Jernvall, J., Thesleff, I., 2000. Reiterative signaling andpatterning during mammalian tooth morphogenesis. Mechanisms ofDevelopment 92, 19–29.

    Google Scholar 

  • Jolly, C.J., 1993. Species, subspecies, and baboon systematics. In:Kimbel, W.H., Martin, L.B. (Eds.), Species, Species Concepts, andPrimate Evolution. Plenum Press, New York, pp. 67–107.

    Chapter  Google Scholar 

  • Lange, K., Boehnke, M., 1983. Extensions to pedigree analysis. IV.Covariance components models for multivariate traits. AmericanJournal of Medical Genetics 14, 513–524.

    Article  Google Scholar 

  • Leakey, M.G., 1993. Evolution of Theropithecus in theTurkana Basin. In: Jablonski, N.G. (Ed.), Theropithecus: TheRise and Fall of a Primate Genus. Cambridge University Press, NewYork, pp. 85–123.

    Chapter  Google Scholar 

  • Lewontin, R., 2001. Foreward. In: Wagner, G.P. (Ed.), TheCharacter Concept in Evolutionary Biology. Academic Press, NewYork, pp. xvii–xxiii.

    Chapter  Google Scholar 

  • Lynch, M., Walsh, B., 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Mahaney, M.C., Blangero, J., Comuzzie, A.G., VandeBerg, J.L., Stern,M.P., MacCluer, J.W., 1995. Plasma HDL cholesterol,triglycerides, and adiposity. A quantitative genetic test of theconjoint trait hypothesis in the San Antonio Family Heart Study.Circulation 92, 3240–3248.

    Article  Google Scholar 

  • National Research Council., 1996. Guide for Care and Use of Laboratory Animals. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Nowak, R.M., 1991. Walker’s Mammals of the World, 5th Edition,Volume II. The Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  • Stock, D.W., 2001. The genetic basis of modularity in thedevelopment and evolution of the vertebrate dentition. Philosophical Transactions Royal Society London B 356, 1633–1653.

    Article  Google Scholar 

  • Tucker, A., Sharpe, P., 2004. The cutting edge of mammaliandevelopment; how the embryo makes teeth. Nature Reviews Genetics 5, 499–508.

    Article  Google Scholar 

  • Turing, A., 1952. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B 237, 37–72.

    Article  Google Scholar 

  • Weiss, K.M., Stock, D.W., Zhao, Z., 1998. Dynamic interactions and the evolutionary genetics of dental patterning. Critical Reviews in Oral Biology and Medicine 9, 369–398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.J. Hlusko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hlusko, L., Mahaney, M. (2007). Of mice and monkeys: Quantitative genetic analyses of size variation along the dental arcade. In: Bailey, S.E., Hublin, JJ. (eds) Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5845-5_16

Download citation

Publish with us

Policies and ethics