Skip to main content

Hadley Circulation Dynamics

Seasonality and the Role of Continents

  • Chapter
The Hadley Circulation: Present, Past and Future

Part of the book series: Advances in Global Change Research ((AGLO,volume 21))

Abstract

The equations that govern the Hadley circulation are reviewed, and the observed circulation is described. Atmospheric general circulation model (AGCM) simulations are used to evaluate the dominant zonally averaged momentum and thermodynamic balances within the Hadley regime.

A diagnostic application of the governing equations is used to identify the mechanisms of the Hadley circulation’s seasonal evolution between equinox and solstice states. A “vertical driving” mechanism acts through the thermodynamic balance, and is important for regulating the circulation’s strength when heating differences between seasons are close (within ~5°) to the equator. A “horizontal driving” mechanism acts through the horizontal momentum equations and is more effective off the equator. Unlike the results from axi-symmetric models in which the prescribed heating is always close to the equator, the horizontal forcing mechanism is responsible for most of the Hadley circulation seasonality in the reanalysis and GCM simulations.

The presence of continental surfaces introduces longitudinal structure into tropical diabatic heating fields, and pulls them farther from the equator. The winter Hadley cells in a simulation with continents are much stronger than in a simulation with no continents, and the summer cell is half the intensity of that when continents are included. The strengthening of the winter cell occurs through an increase in low-level wind speeds, which enhances the zonal momentum flux from the surface into the atmosphere. The development of strong monsoon circulations in the Northern Hemisphere summer and the convergence zones of the Southern Hemisphere (South Pacific [SPCZ], South Atlantic [SACZ], and South Indian Ocean [SICZ] convergence zones) shifts mass out of the subtropics, lowers the zonal mean subtropical highs, and weakens the summer cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker, E., and G. Schmitz. 2001. Interaction between extratropical stationary waves and the zonal mean circulation. Journal of the Atmospheric Sciences 58: 462–480.

    Article  Google Scholar 

  • Cook, K.H. 2003. Role of continents in driving the Hadley cells. Journal of the Atmospheric Sciences 60: 957–976.

    Article  Google Scholar 

  • Cook, K.H., L.L. Greene, and B.N. Belcher. 2004. Seasonal forcing of the Hadley circulation. Quarterly Journal of the Royal Meteorological Society (submitted).

    Google Scholar 

  • Held, I.M., and P.J. Phillips. 1990. A barotropic model of the interaction between the Hadley cell and a Rossby wave. Journal of the Atmospheric Sciences 47: 856–869.

    Article  Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetma, R. Reynolds, R. Jenne, and D. Joseph. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77: 437–471 (see also NCEP/NCAR Reanalysis Electronic Atlas, webmaster@cdc.noaa.gov).

    Article  Google Scholar 

  • Kim, H.K., and S. Lee. 2001. Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. Journal of the Atmospheric Sciences 58: 2859–2871.

    Article  Google Scholar 

  • Pfeffer, R.L. 1980. Wave-mean flow interactions in the atmosphere. Journal of the Atmospheric Sciences 38: 1340–1359.

    Article  Google Scholar 

  • Shea, D.J., K.E. Trenberth, and R.W. Reynolds. 1990. A global monthly sea surface temperature climatology. NCAR Tech. Note, NCAR/TN-345+STR. (Available from National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307–3000.)

    Google Scholar 

  • Washington, W.M., and C.L. Parkinson. 1986. An Introduction to Three-Dimensional Climate Modeling. Mill Valley, California: University Science Books, 422 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cook, K.H. (2004). Hadley Circulation Dynamics. In: Diaz, H.F., Bradley, R.S. (eds) The Hadley Circulation: Present, Past and Future. Advances in Global Change Research, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2944-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2944-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6752-4

  • Online ISBN: 978-1-4020-2944-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics