Skip to main content

Nanocomposite Materials for Nonlinear Optics Based on Local Field Effects

  • Chapter
  • First Online:
Optical Properties of Nanostructured Random Media

Part of the book series: Topics in Applied Physics ((TAP,volume 82))

Abstract

The intent of this article is to give an overview of composite materials for nonlinear optics. Our goal is to avoid the details of both the theorist’s formalisms and the experimentalist’s techniques and try to convey instead the spirit of the kind of work that has been done in this area. We will begin by identifying the class of composite materials we will discuss, reviewing their linear optical properties, and then discussing their nonlinear optical properties. Finally, we will briefly consider two new developments, the presence of optical bistability in composite materials and the importance of photonic band gap effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Gehr, R. W. Boyd, Chem. Mater. 8, 1807 (1996)

    Article  Google Scholar 

  2. J. C. Maxwell Garnett, Philos. Trans. R. Soc. London 203, 385 (1904); ibid 205, 237 (1906)

    Article  ADS  Google Scholar 

  3. D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935)

    Article  Google Scholar 

  4. J. E. Sipe, R. W. Boyd, Phys. Rev. A 46, 1614 (1992)

    Article  ADS  Google Scholar 

  5. R. W. Boyd, J. E. Sipe, J. Opt. Soc. Am. B 11, 297 (1994)

    Article  ADS  Google Scholar 

  6. See, e.g., D. J. Bergman, Phys. Rep. 43, 377 (1978); X. C. Zeng, D. J. Bergman, P. M. Hui, D. Stroud, Phys. Rev. B 38, 10970 (1988); O. Levy, D. Stroud, Phys. Rev. B 56, 8035 (1997); and references therein

    Article  ADS  MathSciNet  Google Scholar 

  7. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York 1975)

    MATH  Google Scholar 

  8. See, for instance, (4.18) of [7]

    MATH  Google Scholar 

  9. J. Van Kranendonk, J. E. Sipe, Foundations of the macroscopic electromagnetic theory of dielectric media, Prog. in Optics XV, 247 (1977); J. E. Sipe, Can. J. Phys. 56, 199 (1978); J. E. Sipe, Can. J. Phys. 58, 889 (1980) and references therein

    Google Scholar 

  10. This equation is a straightforward generalization of (5.57) of [7]

    Google Scholar 

  11. See, e.g., D. Stroud, Superlatt. Microstruct. 23, 567 (1998)

    Article  ADS  Google Scholar 

  12. J. I. Gittleman, B. Abeles, Phys. Rev. B 15, 3273 (1977)

    Article  ADS  Google Scholar 

  13. P. Sheng, Phys. Rev. Lett. 45, 60 (1980)

    Article  ADS  Google Scholar 

  14. See, e.g., C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, New York 1952) pp. 415–429

    Google Scholar 

  15. P. D. Maker, R. W. Terhune, Phys. Rev. A 137, 801 (1965)

    Article  ADS  Google Scholar 

  16. D. B. Smith, G. Fischer, R. W. Boyd, D. A. Gregory, J. Opt. Soc. Am. B 14 1625 (1997)

    Article  ADS  Google Scholar 

  17. X. Zhang, D. Stroud, Phys. Rev. B 49, 944 (1994)

    Article  ADS  Google Scholar 

  18. M. I. Stockman, K. B. Kurlayev, T. F. George, Phys. Rev. B 170, 71 (2000)

    Google Scholar 

  19. R. J. Gehr, G. L. Fischer, R. W. Boyd, J. Opt. Soc. Am. B 14, 2310 (1997)

    Article  ADS  Google Scholar 

  20. G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, L. A Weller-Brophy, Phys. Rev. Lett. 74, 1871 (1995); R. J. Gehr, G. L. Fischer, R. W. Boyd, J. E. Sipe, Phys. Rev. A 53, 2792 (1996)

    Article  ADS  Google Scholar 

  21. R. L. Nelson, R. W. Boyd, App. Phys. Lett. 74, 2417 (1999)

    Article  ADS  Google Scholar 

  22. N. Kalyaniwalla, J. W. Haus, R. Inguva, M. H. Birnboim, Phys. Rev. A 42, 5613 (1990)

    Article  ADS  Google Scholar 

  23. D. J. Bergman, O. Levy, D. Stroud, Phys. Rev. B 49, 129 (1994)

    Article  ADS  Google Scholar 

  24. R. Neuendorf, M. Quinten, U. Kreibig, J. Chem. Phys. 104, 6348 (1996)

    Article  ADS  Google Scholar 

  25. Y. K. Yoon, R. S. Bennink, R. W. Boyd, J. E. Sipe, Opt. Commun., 179, 577 (2000)

    Article  ADS  Google Scholar 

  26. R. S. Bennink, Y.-K. Yoon, R. W. Boyd, J. E. Sipe, Opt. Lett. 24, 1416 (1999)

    Article  ADS  Google Scholar 

  27. C. M. De Sterke, D. G. Salinas, J. E. Sipe, Phys. Rev. E 54, 1969 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sipe, J.E., Boyd, R.W. (2002). Nanocomposite Materials for Nonlinear Optics Based on Local Field Effects. In: Shalaev, V.M. (eds) Optical Properties of Nanostructured Random Media. Topics in Applied Physics, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44948-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44948-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42031-6

  • Online ISBN: 978-3-540-44948-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics