Skip to main content

Real-Time Scale Selection in Hybrid Multi-scale Representations

  • Conference paper
  • First Online:
Scale Space Methods in Computer Vision (Scale-Space 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2695))

Included in the following conference series:

Abstract

Local scale information extracted from visual data in a bottom-up manner constitutes an important cue for a large number of visual tasks. This article presents a framework for how the computation of such scale descriptors can be performed in real time on a standard computer.

The proposed scale selection framework is expressed within a novel type of multi-scale representation, referred to as hybrid multi-scale representation, which aims at integrating and providing variable trade-offs between the relative advantages of pyramids and scale-space representation, in terms of computational efficiency and computational accuracy. Starting from binomial scale-space kernels of different widths, we describe a family pyramid representations, in which the regular pyramid concept and the regular scale-space representation constitute limiting cases. In particular, the steepness of the pyramid as well as the sampling density in the scale direction can be varied.

It is shown how the definition of γ-normalized derivative operators underlying the automatic scale selection mechanism can be transferred from a regular scale-space to a hybrid pyramid, and two alternative definitions are studied in detail, referred to as variance normalization and l p-normalization. The computational accuracy of these two schemes is evaluated, and it is shown how the choice of sub-sampling rate provides a trade-off between the computational efficiency and the accuracy of the scale descriptors. Experimental evaluations are presented for both synthetic and real data. In a simplified form, this scale selection mechanism has been running for two years, in a real-time computer vision system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almansa, A. & Lindeberg, T. (2000), ‘Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale-selection’, IEEE Transactions on Image Processing 9(12), 2027–2042.

    Article  MATH  MathSciNet  Google Scholar 

  • Bretzner, L., Laptev, I. & Lindeberg, T. (2002), Hand-gesture recognition using multiscale colour features, hierarchical features and particle filtering, Face and Gesture’02, 63–74.

    Google Scholar 

  • Bretzner, L. & Lindeberg, T. (1998), ‘Feature tracking with automatic selection of spatial scales’, Computer Vision and Image Understanding 71(3), 385–392.

    Article  Google Scholar 

  • Burt, P. J. & Adelson, E. H. (1983), ‘The Laplacian pyramid as a compact image code’, IEEE Trans. Comm. 9:4, 532–540.

    Article  Google Scholar 

  • Chomat, O., de Verdiere, V., Hall, D. & Crowley, J. (2000), Local scale selection for Gaussian based description techniques, ECCV’00, Springer LNCS 1842, 117–133.

    Google Scholar 

  • Comaniciu, D., Ramesh, V. & Meer, P. (2001), The variable bandwidth mean shift and data-driven scale selection, ICCV’01, 438–445.

    Google Scholar 

  • Crowley, J. L. & Parker, A. C. (1984), ‘A representation for shape based on peaks and ridges in the Difference of Low-Pass Transform’, IEEE-PAMI 6(2), 156–170.

    Google Scholar 

  • Eberly, D., Gardner, R., Morse, B., Pizer, S. & Scharlach, C. (1994), ‘Ridges for image analysis’, J. Math. Im. Vis. 4(4), 353–373.

    Article  Google Scholar 

  • Elder, J. H. & Zucker, S. W. (1996), Local scale control for edge detection and blur estimation, in ‘ECCV’96’, 57–69..

    Google Scholar 

  • Florack, L. M. J. (1997), Image Structure, Kluwer, Netherlands.

    Google Scholar 

  • Frangi, A. F., Niessen, W. J., Hoogeveen, R. M., van Walsum, T. & Viergever, M. A. (1999), Quantitation of vessel morphology from 3D MRI, ‘MICCAI, 358–367.

    Google Scholar 

  • Hadjidemetriou, E., Grossberg, M. D. & Nayar, S. K. (2002), Resolution selection using generalized entropies of multiresolution histograms, ECCV’02, Springer LNCS 2350, 220–235.

    Google Scholar 

  • Hall, D., de Verdiere, V. & Crowley, J. (2000), Object recognition using coloured receptive fields, ECCV’00, Springer LNCS 1842, 164–177.

    Google Scholar 

  • Jägersand, M. (1995), Saliency maps and attention selection in scale and spatial coordinates: An information theoretic approach, ICCV’95, 195–202.

    Google Scholar 

  • Jähne, B. (1995), Digital Image Processing, Springer-Verlag.

    Google Scholar 

  • Kadir, T. & Brady, M. (2001), ‘Saliency, scale and image description’, IJCV 45, 83–105.

    Article  MATH  Google Scholar 

  • Koenderink, J. J. (1984), ‘The structure of images’, Biol. Cyb. 50, 363–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Koller, T. M., Gerig, G., Szèkely, G. & Dettwiler, D. (1995), Multiscale detection of curvilinear structures in 2-D and 3-D image data, ICCV’95, 864–869.

    Google Scholar 

  • Laptev, I. & Lindeberg, T. (2001), Tracking of multi-state hand models using particle filtering and a hierarchy of multi-scale image features, Scale-Space’01, Springer LNCS 2106, 63–74.

    Google Scholar 

  • Lindeberg, T. (1993a), ‘Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention’, IJCV 11(3), 283–318.

    Article  Google Scholar 

  • Lindeberg, T. (1993b), On scale selection for differential operators, SCIA’93, 857–866.

    Google Scholar 

  • Lindeberg, T. (1994), Scale-Space Theory in Computer Vision, Kluwer, Netherlands.

    Google Scholar 

  • Lindeberg, T. (1998a), ‘Edge detection and ridge detection with automatic scale selection’, IJCV 30(2), 117–154.

    Article  Google Scholar 

  • Lindeberg, T. (1998b), ‘Feature detection with automatic scale selection’, IJCV 30(2), 77–116.

    Google Scholar 

  • Lindeberg, T. (1998c), ‘A scale selection principle for estimating image deformations’, Image and Vision Computing 16(14), 961–977.

    Article  Google Scholar 

  • Lindeberg, T. & Bretzner, L (2003), Real-time scale selection in hybrid multi-scale representations, Technical report, KTH, Stockholm, Sweden.

    Google Scholar 

  • Lorenz, C., Carlsen, I.-C., Buzug, T. M., Fassnacht, C. & Weese, J. (1997), Multiscale line segmentation with automatic estimation of width contrast and tangential direction in 2D and 3D medical images, CVRMed-MRCAS’97, Springer LNCS 1205, 233–242.

    Chapter  Google Scholar 

  • Lowe, D. (1999), Object recognition from local scale-invariant features, ICCV’99, 1150–1157.

    Google Scholar 

  • Majer, P. (2001), The influence of the γ-parameter on feature detection with automatic scale selection, Scale-Space’01, Springer LNCS 2106, 245–254.

    Google Scholar 

  • Mikolajczyk, K. & Schmid, C. (2002), An affine invariant interest point detector, ECCV’02, Springer LNCS 2350, 128–142.

    Google Scholar 

  • Nielsen, M. & Lillholm, M. (2001), What do features tell about images, Scale-Space’01, Springer LNCS 2106, 39–50.

    Google Scholar 

  • Niessen, W. & Maas, R. (1996), Optic flow and stereo, in J. Sporring et al (eds) Gaussian Scale-Space Theory, Kluwer.

    Google Scholar 

  • Pedersen, K. S. & Nielsen, M. (2000), ‘The Hausdorff dimension and scale-space normalisation of natural images’, J. Visual Com. and Im. Repr. 11(2), 266–277.

    Article  Google Scholar 

  • Pedersen, K. S. & Nielsen, M. (2001), Computing optic flow by scale-space integration of normal flow, Scale-Space’01, Springer LNCS 2106, 14–25.

    Google Scholar 

  • Pizer, S. M., Burbeck, C. A., Coggins, J. M., Fritsch, D. S. & Morse, B. S. (1994), ‘Object shape before boundary shape: Scale-space medial axis’, J. Math. Im. Vis. 4, 303–313.

    Article  Google Scholar 

  • Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G. & Kikinis, R. (1998), ‘3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images’, Medical Image Analysis 2(2), 143–168.

    Article  Google Scholar 

  • Simoncelli, E. P. & Freeman, W. T. (1995), The steerable pyramid: A flexible architecture for multi-scale derivative computation, ICIP’95, 444–447.

    Google Scholar 

  • Sporring, J. & Weickert, J. A. (1999), ‘Information measures in scale-spaces’, IEEE-IT 45(3), 1051–1058.

    Article  MATH  MathSciNet  Google Scholar 

  • Staal, J., Kalitzin, S., ter Haar Romeny, B. & Viergever, M. (1999), Detection of critical structures in scale-space, Scale-Space’99, Springer LNCS 1682, 105–116.

    Google Scholar 

  • Witkin, A. P. (1983), Scale-space filtering, 8th IJCAI, pp. 1019–1022.

    Google Scholar 

  • Yacoob, Y. & Davis, L. S. (1997), Estimating image motion using temporal multi-scale models of flow and acceleration. In: Motion-Based Recognition, Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lindeberg, T., Bretzner, L. (2003). Real-Time Scale Selection in Hybrid Multi-scale Representations. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44935-3_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-44935-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40368-5

  • Online ISBN: 978-3-540-44935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics