Skip to main content

Triggered Phagocytosis by Salmonella: Bacterial Molecular Mimicry of RhoGTPase Activation/Deactivation

  • Chapter
Bacterial Virulence Factors and Rho GTPases

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 291))

Abstract

Salmonella Typhimurium uses the type III secretion system encoded in the Salmonella pathogenicity island I (SPI-1 TTSS) to inject toxins (effector proteins) into host cells. Here, we focus on the functional mechanism of three of these toxins: SopE, SopE2, and SptP. All three effector proteins change the GTP/GDP loading state of RhoGTPases by transient interactions. SopE and SopE2 mimic eukaryotic G-nucleotide exchange factors and thereby activate RhoGTPase signaling pathways in infected host cells. In contrast, a domain of SptP inactivates RhoGTPases by mimicking the activity of eukaryotic GTPase-activating proteins. The Salmonella-host cell interaction provides an excellent example for the use of molecular mimicry by bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakshi, C. S., V. P. Singh, M.W. Wood, P.W. Jones, T. S.Wallis, and E. E. Galyov. 2000. Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol 182:2341–4.

    Article  PubMed  CAS  Google Scholar 

  2. Brumell, J. H., and S. Grinstein. 2003. Role of lipid-mediated signal transduction in bacterial internalization. Cell Microbiol 5:287–97.

    Article  PubMed  CAS  Google Scholar 

  3. Brumell, J. H., and S. Grinstein. 2004. Salmonella redirects phagosomal maturation. Curr Opin Microbiol 7:78–84.

    Article  PubMed  CAS  Google Scholar 

  4. Buchwald, G., A. Friebel, J. E. Galan, W.D. Hardt, A. Wittinghofer, and K. Scheffzek. 2002. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J 21:3286–95.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, L.M., S. Bagrodia, R. A. Cerione, and J. E. Galan. 1999. Requirement of p21-activated kinase (PAK) for Salmonella Typhimurium-induced nuclear responses. J Exp Med 189:1479–88.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, L.M., S. Hobbie, and J. E. Galan. 1996. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 274:2115–8.

    Article  PubMed  CAS  Google Scholar 

  7. Criss, A. K., D. M. Ahlgren, T. S. Jou, B. A. McCormick, and J. E. Casanova. 2001. The GTPase Rac1 selectively regulates Salmonella invasion at the apical plasma membrane of polarized epithelial cells. J Cell Sci 114:1331–41.

    PubMed  CAS  Google Scholar 

  8. Criss, A. K., and J. E. Casanova. 2003. Coordinate regulation of Salmonella enterica serovar Typhimurium invasion of epithelial cells by the Arp2/3 complex and Rho GTPases. Infect Immun 71:2885–91.

    Article  PubMed  CAS  Google Scholar 

  9. Dai, Sarmiere et al. 2004. Efficient Salmonella entry requires activity cycles of host ADF and cofilin. Cell Microbiol 6: 459–71.

    Article  PubMed  CAS  Google Scholar 

  10. Ehrbar, K., A. Friebel, S. I. Miller, and W. D. Hardt. 2003. Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1. J Bacteriol 185:6950–67.

    Article  PubMed  CAS  Google Scholar 

  11. Friebel, A., H. Ilchmann, M. Aelpfelbacher, K. Ehrbar, W. Machleidt, and W. D. Hardt. 2001. SopE and SopE2 from Salmonella Typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem 276:34035–34040.

    Article  PubMed  CAS  Google Scholar 

  12. Fu, Y., and J. E. Galan. 1999. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293–7.

    Article  PubMed  CAS  Google Scholar 

  13. Fu, Y., and J. E. Galan. 1998. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol Microbiol 27:359–68.

    Article  PubMed  CAS  Google Scholar 

  14. Galan, J. E. 2001. Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17:53–86.

    Article  PubMed  CAS  Google Scholar 

  15. Galan, J. E., and R. Curtiss, 3rd. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86:6383–7.

    PubMed  CAS  Google Scholar 

  16. Galkin, V. E., A. Orlova, M. S. VanLoock, D. Zhou, J. E. Galan, and E.H. Egelman. 2002. The bacterial protein SipA polymerizes G-actin and mimics muscle nebulin. Nat Struct Biol 9:518–21.

    PubMed  CAS  Google Scholar 

  17. Hapfelmeier, S., K. Ehrbar, B. Stecher, M. Barthel, M. Kremer, and W. D. Hardt. 2004. Role of the salmonella pathogenicity island 1 effector proteins SipA, SopB, SopE, and SopE2 in Salmonella enterica subspecies 1 serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 72:795–809.

    Article  PubMed  CAS  Google Scholar 

  18. Hardt, W. D., L. M. Chen, K. E. Schuebel, X. R. Bustelo, and J. E. Galan. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–26.

    Article  PubMed  CAS  Google Scholar 

  19. Hardt, W. D., H. Urlaub, and J. E. Galan. 1998. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc Natl Acad Sci USA 95:2574–9.

    Article  PubMed  CAS  Google Scholar 

  20. Hayward, R. D., and V. Koronakis. 1999. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J 18:4926–34.

    Article  PubMed  CAS  Google Scholar 

  21. Higashide, W., S. Dai, V. P. Hombs, and D. Zhou. 2002. Involvement of SipA in modulating actin dynamics during Salmonella invasion into cultured epithelial cells. Cell Microbiol 4:357–65.

    Article  PubMed  CAS  Google Scholar 

  22. Jepson, M. A., B. Kenny, and A. D. Leard. 2001. Role of sipA in the early stages of Salmonella Typhimurium entry into epithelial cells. Cell Microbiol 3:417–26.

    Article  PubMed  CAS  Google Scholar 

  23. Kaniga, K., J. Uralil, J. B. Bliska, and J. E. Galan. 1996. A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol Microbiol 21:633–41.

    PubMed  CAS  Google Scholar 

  24. Kubori, T., and J. E. Galan. 2003. Temporal regulation of salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115:333–42.

    Article  PubMed  CAS  Google Scholar 

  25. Lilic, M., V. E. Galkin, A. Orlova, M. S. Van Loock, E.H. Egelman, and C. E. Stebbins. 2003. Salmonella SipA polymerizes actin by stapling filaments with nonglobular protein arms. Science 301:1918–21.

    Article  PubMed  CAS  Google Scholar 

  26. McGhie, E. J., R. D. Hayward, and V. Koronakis. 2004. Control of actin turnover by a salmonella invasion protein. Mol Cell 13:497–510.

    Article  PubMed  CAS  Google Scholar 

  27. McGhie, E. J., R. D. Hayward, and V. Koronakis. 2001. Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J 20:2131–9.

    Article  PubMed  CAS  Google Scholar 

  28. Mirold, S., K. Ehrbar, A. Weissmüller, R. Prager, H. Tschäpe, H. Rüssmann, and W.D. Hardt. 2001. Salmonella host cell invasion emerged by acquisition of amosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2. J Bacteriol 183:2348–2358.

    Article  PubMed  CAS  Google Scholar 

  29. Mitra, K., D. Zhou, and J. E. Galan. 2000. Biophysical characterization of SipA, an actin-binding protein from Salmonella enterica. FEBS Lett 482:81–4.

    Article  PubMed  CAS  Google Scholar 

  30. Mukherjee, K., S. Parashuraman, M. Raje, and A. Mukhopadhyay. 2001. SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes. J Biol Chem 276:23607–15.

    Article  PubMed  CAS  Google Scholar 

  31. Murli, S., R. O. Watson, and J. E. Galan. 2001. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol 3:795–810.

    Article  PubMed  CAS  Google Scholar 

  32. Nassar, N., G.R. Hoffman, D. Manor, J. C. Clardy, and R. A. Cerione. 1998. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nat Struct Biol 5:1047–52.

    Article  PubMed  CAS  Google Scholar 

  33. Norris, F. A., M. P.Wilson, T. S.Wallis, E. E. Galyov, and P.W. Majerus. 1998. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA 95:14057–9.

    Article  PubMed  CAS  Google Scholar 

  34. Rudolph, M. G., C. Weise, S. Mirold, B. Hillenbrand, B. Bader, A. Wittinghofer, and W. D. Hardt. 1999. Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases. J Biol Chem 274:30501–9.

    Article  PubMed  CAS  Google Scholar 

  35. Schlumberger, M. C., A. Friebel, G. Buchwald, K. Scheffzek, A. Wittinghofer, and W. D. Hardt. 2003. Amino acids of the bacterial toxin SopE involved in G-nucleotide exchange on Cdc42. J Biol Chem.

    Google Scholar 

  36. Stebbins, C. E., and J. E. Galan. 2001. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414:77–81.

    Article  PubMed  CAS  Google Scholar 

  37. Stebbins, C. E., and J. E. Galan. 2000. Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol Cell 6:1449–60.

    Article  PubMed  CAS  Google Scholar 

  38. Stender, S., A. Friebel, S. Linder, M. Rohde, S. Mirold, and W. D. Hardt. 2000. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol 36:1206–21.

    Article  PubMed  CAS  Google Scholar 

  39. Stevens, M. P., A. Friebel, L. A. Taylor, M.W. Wood, P. J. Brown, W. D. Hardt, and E. E. Galyov. 2003. A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J Bacteriol 185:4992–6.

    Article  PubMed  CAS  Google Scholar 

  40. Stocker, B. A., S. K.Hoiseth, and B. P. Smith. 1983. Aromatic-dependent Salmonella spp. as live vaccine in mice and calves. Dev Biol Stand 53:47–54.

    PubMed  CAS  Google Scholar 

  41. Terebiznik, M. R., O. V. Vieira, S. L. Marcus, A. Slade, C. M. Yip, W. S. Trimble, T. Meyer, B. B. Finlay, and S. Grinstein. 2002. Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol 4:766–73.

    Article  PubMed  CAS  Google Scholar 

  42. Wood, M.W., R. Rosqvist, P.B. Mullan, M. H. Edwards, and E. E. Galyov. 1996. SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol Microbiol 22:327–38.

    Article  PubMed  CAS  Google Scholar 

  43. Zhou, D., L. M. Chen, L. Hernandez, S. B. Shears, and J. E. Galan. 2001. ASalmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 39:248–260.

    Article  PubMed  CAS  Google Scholar 

  44. Zhou, D., M. S.Mooseker, and J. E. Galan. 1999. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc Natl Acad Sci USA 96:10176–81.

    Article  PubMed  CAS  Google Scholar 

  45. Zhou, D., M. S. Mooseker, and J. E. Galan. 1999. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283:2092–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Schlumberger, M.C., Hardt, WD. (2005). Triggered Phagocytosis by Salmonella: Bacterial Molecular Mimicry of RhoGTPase Activation/Deactivation. In: Boquet, P., Lemichez, E. (eds) Bacterial Virulence Factors and Rho GTPases. Current Topics in Microbiology and Immunology, vol 291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27511-8_3

Download citation

Publish with us

Policies and ethics