Skip to main content

Non-Commutative Quantum Geometry: A Reappraisal of the Bohm Approach to Quantum Theory

  • Chapter
Quo Vadis Quantum Mechanics?

Part of the book series: The Frontiers Collection ((FRONTCOLL))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacry, H. and Boon, M. (1987): Boson algebra as a symplectic Clifford algebra, J. Math. Phys. 28, 2693–49

    MathSciNet  Google Scholar 

  • Bohm, D. (1952): A suggested interpretation of the quantum theory in terms of hidden variables, I and II, Phys. Rev. 85, 166–179; 85, 180-193

    Article  ADS  CAS  MATH  MathSciNet  Google Scholar 

  • Bohm, D. (1953): Comments on a letter concerning the causal interpretation of quantum theory, Phys. Rev. 89, 319–20

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Bohm, D. (1980): Wholeness and the Implicate Order, Routledge, London

    Google Scholar 

  • Bohm, D and Hiley, B.J. (1987): An ontological basis for quantum theory: I-Non-relativistic particle systems, Phys. Rep. 144, 323–348

    Article  ADS  MathSciNet  Google Scholar 

  • Bohm, D. and Hiley, B.J. (1993): The Undivided Universe: An Ontological Interpretation of Quantum Theory, Routledge, London.

    Google Scholar 

  • Brown, M.R. and Hiley, B.J. (2000): Schrödinger revisited: An algebraic approach, quant-ph/0005026

    Google Scholar 

  • Carpenter, C.R. (1959): Am. J. Phys. 27, 98–100

    Google Scholar 

  • Crumeyrolle, A. (1990): Orthogonal and Symplectic Clifford Algebras: Spinor Structures, Kluwer, Dordrecht.

    MATH  Google Scholar 

  • Demaret, J. Heller, M. and Lambert, D. (1997): Local and global properties of the world, Foundations of Science 2, 137–176

    Article  Google Scholar 

  • Dirac, P.A.M. (1947): The Principles of Quantum Mechanics (3rd and 4th edns. only), p. 9, Oxford University Press, Oxford

    MATH  Google Scholar 

  • Dürr, D., Goldstein, S. and Zanghi, N. (1996): Bohmian mechanics as the foundation of quantum mechanics, in: Bohmian Mechanics and Quantum Theory: An Appraisal, ed. by J.T. Cushing, A. Fine and S. Goldstein, Boston Studies in the Philosophy of Science 184, p. 26, Kluwer, Dordrecht

    Google Scholar 

  • Emch, G.G. (1972): Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York

    MATH  Google Scholar 

  • Feynman, R.P. (1948): Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20, 367–387

    Article  ADS  MathSciNet  Google Scholar 

  • Feynman, R.P., Leighton R.B., and Sands, M. (1965): The Feynman Lectures on Physics III, pp. 21–12 to 21-13, Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  • Frescura, F.A.M., and Hiley, B.J. (1984) Algebras, quantum theory and pre-space, Revista Brasilera de Fisica, Volume Especial, Os 70 anos de Mario Schonberg, 49–86

    Google Scholar 

  • Gleason, A.M. (1957): Measures on the closed subspaces of Hilbert space, J. Maths. Mechs. 6, 885–93

    MATH  MathSciNet  Google Scholar 

  • De Gosson, M. (1998): The quantum motion of half-densities and the derivation of Schrödinger’s equation, J. Phys. A Math. Gen. 31, 4239–47

    Article  ADS  MATH  Google Scholar 

  • De Gosson, M. (2001): The Principles of Newtonian and Quantum Mechanics, Imperial College Press, London

    Book  MATH  Google Scholar 

  • Guillemin, V. and Sternberg, S. (1978): Geometric Asymptotics, Math. Surveys Monographs 14, Am. Math. Soc., Providence, RI

    Google Scholar 

  • Guillemin, V. and Sternberg, S. (1990): Symplectic Techniques in Physics, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Heisenberg, W. (1958): Physics and Philosophy: The Revolution in Modern Science, George Allen and Unwin, London

    Google Scholar 

  • Hiley, B.J. (2001): Non-commutative geometry, the Bohm interpretation and the mind-matter relationship, Computing Anticipatory Systems: CASYS 2000-Fourth International Conference, ed. by M. Dubois, pp. 77–88, AIP

    Google Scholar 

  • Hiley, B.J. (2001a): A note on the role of idempotents in the extended Heisenberg algebra, in: Implications, ed. by G. Bowden, Scientific Aspects of ANPA 22, 107–121

    Google Scholar 

  • Hiley, B.J. (2001b): Towards a dynamics of moments: The role of algebraic deformation and inequivalent vacuum states, in: Correlations, ed. by G. Bowden, Proc. ANPA 23, 104–134

    Google Scholar 

  • Hiley, B.J. (2002): From the Heisenberg picture to Bohm: A new perspective on active information and its relation to Shannon information, in: Proc. Conf. Quantum Theory: Reconsideration of Foundations, ed. by A. Khrennikov, pp. 141–162, Växjö University Press, Sweden

    Google Scholar 

  • Hiley, B.J. (2003): Algebraic quantum mechanics, algebraic spinors and Hilbert space, in: Boundaries, ed. by G. Bowden, Scientific Aspects of ANPA 24, ANPA, London, pp. 149–186

    Google Scholar 

  • Holland, P. (1993): The Quantum Theory of Motion, Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kauffman, L.H. (2002): Biologic. AMS Contemp. Math. Series 304, 313–340

    MATH  MathSciNet  Google Scholar 

  • Kauffman, L.H. (2002a): Quantum computing and the Jones polynomial, AMS Contemp. Math. Series 305, 101–137

    MATH  MathSciNet  Google Scholar 

  • Kochen, K. and Specker, E.P. (1967): J. Math. Mech. 17, 59–87

    MathSciNet  MATH  Google Scholar 

  • Pauli, W. (1979): Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, Band I, 1919–1929, ed. by Hermann, A., Meyenn, K.V. and Weisskopf, V.F., p. 347, Springer, Berlin

    Google Scholar 

  • Polkinghorne, J. (2002): A Very Brief Introduction to Quantum Mechanics, Oxford University Press, Oxford

    Google Scholar 

  • Schrödinger, E. (1926): Quantization as an eigenvalue problem, Ann. der Phyk. 79, 361

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Center for Frontier Sciences

About this chapter

Cite this chapter

Hiley, J. (2005). Non-Commutative Quantum Geometry: A Reappraisal of the Bohm Approach to Quantum Theory. In: Elitzur, A.C., Dolev, S., Kolenda, N. (eds) Quo Vadis Quantum Mechanics?. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26669-0_16

Download citation

Publish with us

Policies and ethics