Skip to main content

The Mertens Conjecture Revisited

  • Conference paper
Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

Let M(x)=∑1 ≤ n ≤ x μ(n) where μ(n) is the Möbius function. The Mertens conjecture that \(|M(x)|/\sqrt{x}<1\) for all x>1 was disproved in 1985 by Odlyzko and te Riele [13]. In the present paper, the known lower bound 1.06 for \(\limsup M(x)/\sqrt{x}\) is raised to 1.218, and the known upper bound –1.009 for \(\liminf M(x)/\sqrt{x}\) is lowered to –1.229. In addition, the explicit upper bound of Pintz [14] on the smallest number for which the Mertens conjecture is false, is reduced from \(\exp(3.21\times10^{64})\) to \(\exp(1.59\times10^{40})\). Finally, new numerical evidence is presented for the conjecture that \(M(x)/\sqrt{x}=\Omega_{\pm}(\sqrt{\log\log\log x})\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bateman, P.T., Brown, J.W., Hall, R.S., Kloss, K.E., Stemmler, R.M.: Linear relations connecting the imaginary parts of the zeros of the zeta function. In: Atkin, A.O.L., Birch, B.J. (eds.) Computers in Number Theory, New York, pp. 11–19 (1971)

    Google Scholar 

  2. Ford, K.: Vinogradov’s integral and bounds for the Riemann zeta function. Proc. Lond. Math. Soc. 85, 565–633 (2002)

    Article  MATH  Google Scholar 

  3. Good, I.J., Churchhouse, R.F.: The Riemann hypothesis and pseudorandom features of the Möbius sequence. Math. Comp. 22, 857–861 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 4th edn. Oxford at the Clarendon Press (1975)

    Google Scholar 

  5. Ingham, A.E.: On two conjectures in the theory of numbers. Amer. J. Math. 64, 313–319 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jurkat, W.B.: On the Mertens conjecture and related general Ω-theorems. In: Diamond, H. (ed.) Analytic Number Theory, Providence, pp. 147–158 (1973)

    Google Scholar 

  7. Jurkat, W., Peyerimhoff, A.: A constructive approach to Kronecker approximations and its application to the Mertens conjecture. J. reine angew. Math. 286/287, 322–340 (1976)

    Article  MathSciNet  Google Scholar 

  8. Kotnik, T., van de Lune, J.: On the order of the Mertens function. Exp. Math. 13, 473–481 (2004)

    MATH  Google Scholar 

  9. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mathematica, version 5.0, Wolfram Research, Inc., Champaign, IL (2003), http://www.wolfram.com/

  11. Mertens, F.: Über eine zahlentheoretische Funktion. Sitzungsberichte Akad. Wiss. Wien IIa 106, 761–830 (1897)

    MATH  Google Scholar 

  12. Ng, N.: The distribution of the summatory function of the Möbius function. Proc. Lond. Math. Soc. 89, 361–389 (2004)

    Article  MATH  Google Scholar 

  13. Odlyzko, A.M., te Riele, H.J.J.: Disproof of the Mertens conjecture. J. reine angew. Math. 357, 138–160 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pintz, J.: An effective disproof of the Mertens conjecture. Astérisque 147–148, 325–333 (1987)

    MathSciNet  Google Scholar 

  15. PARI/GP, version 2.2.11 (alpha), Bordeaux (2005), http://pari.math.u-bordeaux.fr/

  16. te Riele, H.J.J.: Computations concerning the conjecture of Mertens. J. reine angew. Math. 311/312, 356–360 (1979)

    Article  Google Scholar 

  17. Saffari, B.: Sur la fausseté de la conjecture de Mertens. Avec une observation par Paul Lévy. C. R. Acad. Sci. 271(A), 1097–1101 (1970)

    MATH  MathSciNet  Google Scholar 

  18. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, Oxford (1951)

    Google Scholar 

  19. Walfisz, A.: Weylsche Exponentialsummen in der neueren Zahlentheorie. VEB Deutscher Verlag (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kotnik, T., te Riele, H. (2006). The Mertens Conjecture Revisited. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_12

Download citation

  • DOI: https://doi.org/10.1007/11792086_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics