Skip to main content

Languages Recognizable by Quantum Finite Automata

  • Conference paper
Implementation and Application of Automata (CIAA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3845))

Included in the following conference series:

Abstract

There are several nonequivalent definitions of quantum finite automata. Nearly all of them recognize only regular languages but not all regular languages. On the other hand, for all these definitions there is a result showing that there is a language l such that the size of the quantum automaton recognizing L is essentially smaller than the size of the minimal deterministic automaton recognizing L.

For most of the definitions of quantum finite automata the problem to describe the class of the languages recognizable by the quantum automata is still open. The partial results are surveyed in this paper. Moreover, for the most popular definition of the QFA, the class of languages recognizable by a QFA is not closed under union or any other binary Boolean operation where both arguments are significant.

The end of the paper is devoted to unpublished results of the description of the class of the recognizable languages in terms of the second order predicate logics. This research is influenced by the results of Büchi [1,2], Elgot [3], Trakhtenbrot [4] (description of regular languages in terms of MSO), R.Fagin [5,6] (description of NP in terms of ESO), von Neumann [7] (quantum logics), Barenco, Bennett et al. [8](universal quantum gates).

Research supported by Grant No.05.1528 from the Latvian Council of Science and European Commission, contract IST-1999-11234.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Nagel, E. (ed.) Proceeding of the International Congress on Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford University Press, Stanford (1960)

    Google Scholar 

  3. Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98, 21–51 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Trakhtenbrot, B.A.: Finite automata and the logic of one-place predicates. Siberian Mathematical Journal 3, 103–131 (1962) (in Russian); English translation: American Mathematical Society Translations 59, 23–55 (1966)

    MathSciNet  MATH  Google Scholar 

  5. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7, pp. 43–73 (1974)

    Google Scholar 

  6. Fagin, R.: Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 21, 89–96 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1932)

    Google Scholar 

  8. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N.H., Shor, P.W., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A 52, 3457–3467 (1995)

    Article  Google Scholar 

  9. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: Strengths, weaknesses and generalizations. In: Proc. FOCS 1998, pp. 332–341 (1998), also quant-ph/98020622

    Google Scholar 

  10. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor. Comput. Sci. 237, 275–306 (2000); also quant-ph/9707031

    Article  MathSciNet  MATH  Google Scholar 

  11. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc. FOCS 1997, pp. 66–75 (1997)

    Google Scholar 

  12. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM J. Comput. 31, 1456–1478 (2002); also quant-ph/9903014

    Article  MathSciNet  MATH  Google Scholar 

  13. Meyer, A.R., Thompson, C.: Remarks on algebraic decomposition of automata. Mathematical Systems Theory 3, 110–118 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ambainis, A., Bonner, R.F., Freivalds, R., Kikusts, A.: Probabilities to accept languages by quantum finite automata. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 174–183. Springer, Heidelberg (1999); also quant-ph/9904066

    Chapter  Google Scholar 

  15. Kikusts, A.: A small 1-way quantum finite automation (1998); quant-ph/9810065

    Google Scholar 

  16. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and quantum finite automata. J. ACM 49, 496–511 (2002); also quant-ph/9804043

    Article  MathSciNet  MATH  Google Scholar 

  17. Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proc. FOCS 1999, pp. 369–377 (1999); also quant-ph/9904093

    Google Scholar 

  18. Gruska, J.: Descriptional complexity issues in quantum computing. Journal of Automata, Languages and Combinatorics 5, 191–218 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Ambainis, A., Kikusts, A., Valdats, M.: On the class of languages recognizable by 1-way quantum finite automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 75–86. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Valdats, M.: The class of languages recognizable by 1-way quantum finite automata is not closed under union. In: Proc. Int. Workshop Quantum Computation and Learning, Sundbyholm Slott, Sweden, pp. 52–64 (2000)

    Google Scholar 

  21. Immerman, N.: Descriptive and computational complexity. In: Csirik, J.A., Demetrovics, J., Gecseg, F. (eds.) FCT 1989. LNCS, vol. 380, pp. 244–245. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  22. Immerman, N.: Descriptive complexity: A logician’s approach to computation. Notices of the AMS 42, 1127–1133 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Pnueli, A.: The temporal logic of programs. In: Proc. FOCS 1977, pp. 1–14 (1977)

    Google Scholar 

  24. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way finite-state transducers. ACM Trans. Comput. Logic 2, 216–254 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stockmeyer, L.: The polynomial-time hierarchy. Theoretical Computer Science 3, 1–22 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Immerman, N.: Relational queries computable in polynomial time (extended abstract). In: Proc. STOC 1982, pp. 147–152. ACM Press, New York (1982)

    Google Scholar 

  27. Vardi, M.Y.: Complexity of relational query languages. In: Proc. STOC 1982, pp. 137–146 (1982)

    Google Scholar 

  28. Immerman, N.: Upper and lower bounds for first order expressibility. J. Comput. Syst. Sci. 25, 76–98 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vincenzo, D.P.D.: Two-bit gates are universal for quantum computation. Physical Review A 51, 1015–1022 (1995)

    Article  Google Scholar 

  31. Dzelme, I.: Quantum finite automata and logics. Master’s thesis, University of Latvia, Advisor: Freivalds, R (2005)

    Google Scholar 

  32. Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44, 12–36 (1957)

    MathSciNet  MATH  Google Scholar 

  33. Burtschik, H.J., Vollmer, H.: Lindström quantifiers and leaf language definability. In: Electronic Colloquium on Computational Complexity, TR96–005 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freivalds, R. (2006). Languages Recognizable by Quantum Finite Automata. In: Farré, J., Litovsky, I., Schmitz, S. (eds) Implementation and Application of Automata. CIAA 2005. Lecture Notes in Computer Science, vol 3845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11605157_1

Download citation

  • DOI: https://doi.org/10.1007/11605157_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31023-5

  • Online ISBN: 978-3-540-33097-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics