Skip to main content

Abstract

A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/loglog n) times the local density of the caterpillar, where the local density is a well known lower bound on the bandwidth. This result is best possible in the sense that there are caterpillars whose bandwidth is larger than their local density by a factor of Ω(log n/loglog n). The previous best approximation ratio for the bandwidth of caterpillars was O(log n). We show that any further improvement in the approximation ratio would require using linear arrangements that do not respect the order of the vertices of the backbone. We also show how to obtain a (1 + ε) approximation for the bandwidth of caterpillars in time \(2^{\tilde{O}(\sqrt{n/\epsilon})}\). This result generalizes to trees, planar graphs, and any family of graphs with treewidth \(\tilde{O}(\sqrt{n})\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the bandwidth problem. Technical report, University of Bonn (1997)

    Google Scholar 

  2. Chinn, P., Chvatálová, J., Dewdney, A., Gibbs, N.: The bandwidth problem for graphs and matrices - survey. Journal of Graph Theory 6(3), 223–254 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chung, F.R., Seymour, P.D.: Graphs with small bandwidth and cutwidth. Discrete Mathematics 75, 113–119 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dunagan, J., Vempala, S.: On euclidean embeddings and bandwidth minimization. In: Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX 2001. LNCS, vol. 2129, pp. 229–240. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Feige, U.: Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst. Sci. 60(3), 510–539 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feige, U.: Coping with the NP-hardness of the graph bandwidth problem. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 10–19. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Filmus, Y.: Master’s thesis, Weizmann Institute (2003)

    Google Scholar 

  8. Gupta: Improved bandwidth approximation for trees. In: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, pp. 788–793 (2000)

    Google Scholar 

  9. Haralambides, J., Makedon, F., Monien, B.: Bandwidth minimization: An approximation algorithm for caterpillars. Mathematical Systems Theory, 169–177 (1991)

    Google Scholar 

  10. Krauthgamer, R., Lee, J., Mendel, M., Naor, A.: Measured descent: A new embedding method for finite metrics. In: FOCS, pp. 434–443 (2004)

    Google Scholar 

  11. Monien, B.: The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete. SIAM J. Algebraic Discrete Methods 7(4), 505–512 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Papadimitriou, C.: The NP-completeness of the bandwidth minimization problem. Computing 16, 263–270 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Saxe, J.: Dynamic-programming algorithms for recognizing small-bandwidth graphs in polynomial time. SIAM J. Algebraic Discrete Methods 1, 363–369 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Unger, W.: The complexity of the approximation of the bandwidth problem. In: FOCS 1998: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, pp. 82–91 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feige, U., Talwar, K. (2005). Approximating the Bandwidth of Caterpillars. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_6

Download citation

  • DOI: https://doi.org/10.1007/11538462_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28239-6

  • Online ISBN: 978-3-540-31874-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics