Skip to main content

Temporal Multi-Soliton Complexes Generated by Passively Mode-Locked Lasers

  • Chapter
  • First Online:
Dissipative Solitons

Part of the book series: Lecture Notes in Physics ((LNP,volume 661))

Abstract

We review various experimental observations of multiple pulsing in passively mode-locked lasers and give several possible mechanisms that have been addressed in the literature. We then propose some criteria to distinguish dissipative multi-soliton complexes among them, and relate them to the theoretical literature. A particular distributed model, which includes the main laser features usually involved in the formation of multi-soliton complexes, viz. the cubic-quintic complex Ginzburg-Landau equation (CQCGLE), is detailed. We put emphasis on the attractors of soliton pairs, and show that some features predicted by the CQCGLE model are corroborated by experiments in a passively mode-locked fiber laser. However, some other experimental features of soliton pair attractors remain unexplained within the frame of a distributed model. We then develop a more realistic model which includes discreteness and periodicity, and this in turn leads to a large number of soliton pair attractors. The important influence of the dispersion regime is stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. A. J. DeMaria, D. A. Stetser and H. Heynau, Appl. Phys. Lett. 8, 174 (1966).

    Google Scholar 

  2. E. M. Garmire and A. Yariv, IEEE J. Quant. Elect. QE-3, 222 (1967).

    Google Scholar 

  3. J. Goodberlet, J. Wang, J. G. Fujimoto and P. A. Schulz, Opt. Lett. 14, 1125 (1989).

    Google Scholar 

  4. E. P. Ippen, H. A. Haus, and L. Y. Liu, J. Opt. Soc. Am. B 6, 1736 (1989).

    Google Scholar 

  5. D. E. Spence, J. M. Evans, W. E. Sleat and W. Sibbett, Opt. Lett. 16, 1762 (1991).

    Google Scholar 

  6. D. Huang, M. Ulman, L. H. Acioli, H. A. Haus and J. G. Fujimoto, Opt. Lett. 17, 511 (1992).

    Google Scholar 

  7. V. J. Matsas, T. P. Newson, D. J. Richardson and D. N. Payne, Electron. Lett. 28, 1391 (1992).

    Google Scholar 

  8. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

    Google Scholar 

  9. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).

    Google Scholar 

  10. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).

    Google Scholar 

  11. L. F. Mollenauer and R. H. Stolen, Opt. Lett. 9, 13 (1984).

    Google Scholar 

  12. Irl N. Duling III, Opt. Lett. 16, 539 (1991).

    Google Scholar 

  13. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, Electron. Lett. 27, 730 (1991).

    Google Scholar 

  14. M. Nakazawa, E. Yoshida, and Y. Kimura, Appl. Phys. Lett. 59, 2073 (1991).

    Google Scholar 

  15. Rare-earth doped fiber lasers and amplifiers, Editor M. J. F. Digonnet, second edition, Marcel Dekker, New York (2001).

    Google Scholar 

  16. R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, Electron. Lett. 22, 159 (1986).

    Google Scholar 

  17. E. Desurvire, J. R. Simpson, and P. C. Becker, Opt. Lett. 12, 888 (1987).

    Google Scholar 

  18. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas and M. W. Phillips, Electron. Lett. 27, 1451 (1991).

    Google Scholar 

  19. M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn and M. M. Murnane, Opt. Lett. 18, 977 (1993).

    Google Scholar 

  20. A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz and R. Szipcs, Opt. Lett. 20, 602 (1995).

    Google Scholar 

  21. A. M. Kowalevicz Jr., T. R. Schlibli, F. X. Kärtner and J. G. Fujimoto, Opt. Lett. 27, 2037 (2002).

    Google Scholar 

  22. A. B. Grudinin, D. J. Richardson and D. N. Payne, Electron. Lett. 29, 1860 (1993).

    Google Scholar 

  23. J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, IEEE J. Quantum Electron. 34, 1749 (1998).

    Google Scholar 

  24. B. C. Collings, K. Bergman, and W. H. Knox, Opt. Lett. 23, 123 (1998).

    Google Scholar 

  25. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong and A. Sysoliatin, Opt. Lett. 25, 1418 (2000).

    Google Scholar 

  26. N. H. Bonadeo, W. H. Knox, J. M. Roth and K. Bergman, Opt. Lett. 25, 1421 (2000).

    Google Scholar 

  27. K. S. Abedin, N. Onodera and M. Hyodo, Opt. Lett. 24, 1564 (1999).

    Google Scholar 

  28. M. J Guy, D. U. Noske and J. R. Taylor, Opt. Lett. 18, 1447 (1993).

    Google Scholar 

  29. M. Nakazawa, K. Suzuki and H. A. Haus, Phys. Rev. A 38, 5193 (1988).

    Google Scholar 

  30. X. Zhu, M. Pich, G. D. Goodnob, R. J. D. Miller, Opt. Commun. 145, 123 (1998).

    Google Scholar 

  31. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii and A. N. Starodumov, Opt. Lett. 15, 314 (1990).

    Google Scholar 

  32. A. N. Pilipetskii, E. A. Golovchenko and C. R. Menyuk, Opt. Lett. 20, 907 (1995).

    Google Scholar 

  33. A. B. Grudinin and S. Gray, J. Opt. Soc. Am. B 14, 144 (1997).

    Google Scholar 

  34. T. Brabec, Ch. Spielmann and F. Krausz, Opt. Lett. 16, 1961 (1991).

    Google Scholar 

  35. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Sheuer, M. Tilsch and T. Tschudi, Opt. Lett. 22, 1009 (1997).

    Google Scholar 

  36. T. Tsang, Opt. Lett. 18, 293 (1993).

    Google Scholar 

  37. F. Salin, P. Grangier, G. Roger and A. Brun, Phys. Rev. Lett. 56, 1132 (1986).

    Google Scholar 

  38. F. W. Wise, I. A. Walmsley and C. L. Tang, Opt. Lett. 13, 129 (1988).

    Google Scholar 

  39. Ch. Spielmann, P. F. Curley, T. Brabec and F. Krausz, IEEE J. of Quantum Electron. 30, 1100 (1994).

    Google Scholar 

  40. J. Herrmann, V. P. Kalosha and M. Miller, Opt. Lett. 22, 236 (1997).

    Google Scholar 

  41. C. Wang, W. Zhang, K. F. Lee and K. M. Koo, Opt. Commun. 137, 89 (1997).

    Google Scholar 

  42. M. Lai, J. Nicholson and W. Rudolph, Opt. Commun. 142, 45 (1997).

    Google Scholar 

  43. B. Chassagne, G. Jonusauskas, J. Oberl and C. Rullire, Opt. Commun. 150, 355 (1998).

    Google Scholar 

  44. H. Kitano and S. Kinoshita, Opt. Commun. 157, 128 (1998).

    Google Scholar 

  45. J. Aus der Au, D. Kopf, F. Morier-Genoud, M. Moser and U. Keller, Opt. Lett. 22, 307 (1997).

    Google Scholar 

  46. B. C. Collings, K. Bergman and W. H. Knox Opt. Lett. 22, 1098 (1997).

    Google Scholar 

  47. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. Akhmediev and J. M. Soto-Crespo, J. Opt. Soc. Am. B, 16, 895 (1999).

    Google Scholar 

  48. M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).

    Google Scholar 

  49. W. Forysiak, J. F. L. Devaney, N. J. Smith and N. J. Doran, Opt. Lett. 22, 600 (1997).

    Google Scholar 

  50. M. Nakazawa, H. Kubota, A. Sahara and K. Tamura, IEEE Phot. Technol. Lett. 8, 1088 (1996).

    Google Scholar 

  51. N. H. Seong, D. Y. Kim and S. K. Oh, Electron. Lett. 37, 157 (2001).

    Google Scholar 

  52. W. S. Wong, S. Namiki, M. Margalit, H. A. Haus and E. P. Ippen, Opt. Lett. 22, 1150 (1997).

    Google Scholar 

  53. F. Gutty, Ph. Grelu, N. Huot, G. Vienne and G. Millot, Electron. Lett. 37, 745 (2001).

    Google Scholar 

  54. S. M. J. Kelly, Electron. Lett. 28, 806 (1992).

    Google Scholar 

  55. Ph. Grelu, F. Belhache, F. Gutty and J. M. Soto-Crespo, J. Opt. Soc. Am. B 20, 863 (2003).

    Google Scholar 

  56. D. Y. Tang, W. S. Man, H. Y. Tam and P. D. Drummond, Phys. Rev. A, 64, 033814 (2001).

    Article  Google Scholar 

  57. Ph. Grelu, F. Belhache, F. Gutty and J. M. Soto-Crespo, Opt. Lett. 27, 966 (2002).

    Google Scholar 

  58. K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, Appl. Phys. Lett. 64, 149 (1994).

    Google Scholar 

  59. K. Tamura, E. P. Ippen, H. A. Haus and L. E. Nelson, Opt. Lett. 18, 1080 (1993).

    Google Scholar 

  60. K. Tamura and M. Nakazawa, Appl. Phys. Lett. 67, 3691 (1995).

    Google Scholar 

  61. N. Akhmediev, A. Ankiewicz and J. M. Soto-Crespo, Phys. Rev. Lett., 79, 4047 (1997).

    Google Scholar 

  62. J. M. Soto-Crespo, N. Akhmediev, Ph. Grelu and F. Belhache, Opt. Lett. 28, 1757 (2003).

    Google Scholar 

  63. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krambugel, B. A. Richman and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).

    Article  Google Scholar 

  64. C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, Opt. Lett. 19, 198 (1994).

    Google Scholar 

  65. B. Malomed, Phys. Rev. A 44, 6954 (1991).

    Article  Google Scholar 

  66. J. D. Moores, Opt. Commun. 96, 65 (1993).

    Google Scholar 

  67. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman & Hall, London, 1997).

    Google Scholar 

  68. N. Akhmediev, V. V. Afanasjev and J. M. Soto-Crespo, Phys. Rev E 53, 1190 (1996).

    Google Scholar 

  69. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev and S. Wabnitz, Phys. Rev. E 55 4783 (1997).

    Google Scholar 

  70. J. M. Soto-Crespo, Nail Akhmediev and Kin S. Chiang Phys. Lett. A 291, 115 (2001).

    Google Scholar 

  71. J. M. Soto-Crespo, N. Akhmediev, and V. V. Afanasjev, J. Opt. Soc. Am. B 13, 1439 (1996).

    Google Scholar 

  72. V. V. Afanasjev and N. Akhmediev, Phys. Rev. E 53, 6471 (1996).

    Google Scholar 

  73. N. Akhmediev, A. Ankiewicz and J. M. Soto-Crespo, J. Opt. Soc. Am. B 15, 515 (1998).

    Google Scholar 

  74. J. M. Soto-Crespo and N. Akhmediev, Phys. Rev. E. 66, 066610 (2002).

    Google Scholar 

  75. M. J. Lederer, B. Luther-Davies, H. H. Tan and C. Jagadish, Appl. Phys. Lett., 70, 3428 (1997).

    Google Scholar 

  76. F. X. Kärtner and U. Keller, Opt. Lett. 20, 16 (1995).

    Google Scholar 

  77. I. D. Jung, F. X. Kärtner, L. R. Brovelli, M. Kamp and U. Keller, Opt. Lett. 20, 1892 (1995).

    Google Scholar 

  78. H. A. Haus, J. Appl. Phys., 46, 3049 (1975).

    Google Scholar 

  79. J. M. Soto-Crespo and N. Akhmediev, J. Opt. Soc. Am. B, 16, 674 (1999).

    Google Scholar 

  80. N. Akhmediev, F. Zen, and P. Chu, Opt. Comm. 201, 217 (2002).

    Google Scholar 

  81. S. T. Cundiff, J. M. Soto-Crespo and N. Akhmediev, Phys. Rev. Lett. 88, 073903 (2002).

    Google Scholar 

  82. J. P. Gordon, J. Opt. Soc. Am. B 9, 91 (1992).

    Google Scholar 

  83. J. N. Elgin and S. M. J. Kelly, Opt. Lett. 18, 787 (1993).

    Google Scholar 

  84. L. Socci and M. Romagnoli, J. Opt. Soc. Am. B 16, 12 (1999).

    Google Scholar 

  85. Ph. Grelu, J. Béal and J. M. Soto-Crespo, Opt. Express, 11, 2238 (2003).

    Google Scholar 

  86. A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond and F. Sánchez, Opt. Comm. 225, 71 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nail Akhmediev Adrian Ankiewicz

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Soto-Crespo, J., Grelu, P. Temporal Multi-Soliton Complexes Generated by Passively Mode-Locked Lasers. In: Akhmediev, N., Ankiewicz, A. (eds) Dissipative Solitons. Lecture Notes in Physics, vol 661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10928028_9

Download citation

Publish with us

Policies and ethics