Skip to main content

Stand-off Explosives Detection Using Terahertz Technology

  • Conference paper
Stand-Off Detection of Suicide Bombers and Mobile Subjects

Part of the book series: NATO Security through Science Series ((NASTB))

Abstract

Terahertz imaging and spectroscopy has been shown to have the potential to use very low levels of this non-ionising radiation to detect and identify objects hidden under clothing at stand-off distances. In this paper we discuss some of the important factors involved in developing systems for the security industry, and describe our recent work on the development of a prototype terahertz stand-off detection system. Using this system we demonstrate the spectroscopic detection of concealed explosives at a stand-off distance of 1 m, both real time, in reflection, and under normal atmospheric conditions. We believe the technique has the potential for further development towards a practical system for the detection of suicide bombers and mobile subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auston, D.H., 1975. Picosecond optoelectronic switching and gating in silicon, Appl. Phys. Lett., 26, 101–103.

    Article  CAS  Google Scholar 

  2. Uhd Jepsen, P., R.H. Jacobsen, and S.R. Keiding, 1996. Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. Am. B, 13, 2424–2436.

    CAS  Google Scholar 

  3. Kemp, M.C., P.F. Taday, B.E. Cole, J.A. Cluff, A.J. Fitzgerald, and W.R. Tribe, 2003. Security applications of terahertz technology, SPIE 5070, 44.

    Google Scholar 

  4. Tribe, W.R., D.A. Newnham, P.F. Taday, and M.C. Kemp, 2004. Hidden object detection: security applications of terahertz technology, SPIE 5354, 168.

    Article  Google Scholar 

  5. Strachan, C.J., P.F. Taday, D.A. Newnham, K.C. Gordon, J.A. Zeitler, M. Pepper, and T. Rades, 2005. Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity, J. Pharma. Sci., 94, 837–846.

    Article  CAS  Google Scholar 

  6. Mittleman, D.M., R.H. Jacobsen, and M.C. Nuss, 1996. T-ray imaging IEEE J. Sel. Top. Quantum Electron., 2, 679–692.

    Article  CAS  Google Scholar 

  7. Pickwell, E., B.E. Cole, A.J. Fizgerald, M. Pepper, and V.P. Wallace, 2004. In vivo study of human skin using pulsed terahertz radiation, Phys. Med. Biol., 49, 1595–1607.

    Article  CAS  Google Scholar 

  8. Wallace, V.P., A.J. Fizgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D.D. Arnone, 2004. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo, Brit. J. Dermatol., 151, 424–432.

    Article  CAS  Google Scholar 

  9. Smith P.R., D.H. Auston, and M.C. Nuss, 1988. Subpicosecond photoconducting dipole antennas, IEEE J. Quantum Electron., 24, 255–260.

    Article  Google Scholar 

  10. Piao, Z., M. Tani, and K. Sakai, 2000. Carrier dynamics and terahertz radiation in photoconductive antennas, Jpn. J. Appl. Phys., 39 (Part 1), 96–100.

    Article  Google Scholar 

  11. Smith, F.W., H.Q. Le, V. Diadiuk, M.A. Hollis, A.R. Calawa, S. Gupta, M. Frankel, D.R. Dykaar, G.A. Mourou, and T.Y. Hsiang, 1989. Picosecond GaAs-based photoconductive optoelectronic detectors, Appl. Phys. Lett., 54, 890–892.

    Article  CAS  Google Scholar 

  12. Chen, Y., S. Williamson, T. Brock, F.W. Smith, and A.R. Calawa, 1991. 375-GHz-bandwidth photoconductive detector, Appl. Phys. Lett., 59, 1984–1986.

    Article  CAS  Google Scholar 

  13. Tani M., K. Sakai, and H. Mimura, 1997. Ultrafast photoconductive detectors based on semi-insulating GaAs and In P, Jpn. J. Appl. Phys., 36, L1175–L1178.

    Article  CAS  Google Scholar 

  14. Kono, S., M. Tani, P. Gu, and K. Sakai, 2000. Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses, Appl. Phys. Lett., 77, 4104–4106.

    Article  CAS  Google Scholar 

  15. Baker C., I.S. Gregory, W.R. Tribe, I.V. Bradley, M.J. Evans, M. Withers, P.F. Taday, V.P. Wallace, E.H. Linfield, A.G. Davies, and M. Missous, 2003. Terahertz pulsed imaging with 1.06 μ m laser excitation, Appl. Phys. Lett., 83, 4113–4115.

    Article  CAS  Google Scholar 

  16. Gregory, I.S., C. Baker, W.R. Tribe, M.J. Evans, H.E. Beere, E.H. Linfield, A.G. Davies, and M. Missous, 2003. High resistivity annealed low-temperature GaAs with 100 fs lifetimes, Appl. Phys. Lett., 83, 4199–4201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Kemp, M.C., Baker, C., Gregory, I. (2006). Stand-off Explosives Detection Using Terahertz Technology. In: Schubert, H., Rimski-Korsakov, A. (eds) Stand-Off Detection of Suicide Bombers and Mobile Subjects. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5159-X_18

Download citation

Publish with us

Policies and ethics