Skip to main content

Beauville surfaces without real structures

  • Chapter
Geometric Methods in Algebra and Number Theory

Part of the book series: Progress in Mathematics ((PM,volume 235))

Summary

Inspired by a construction by Arnaud Beauville of a surface of general type with K 2 = 8, p g = 0, the second author defined Beauville surfaces as the surfaces which are rigid, i.e., without nontrivial deformations, and which admit an unramified covering which is isomorphic to a product of curves of genus at least 2.

In this case the moduli space of surfaces homeomorphic to the given surface consists either of a unique real point, or of a pair of complex conjugate points corresponding to complex conjugate surfaces. It may also happen that a Beauville surface is biholomorphic to its complex conjugate surface, while failing to admit a real structure.

The first aim of this note is to provide series of concrete examples of the second situation, respectively of the third.

The second aim is to introduce a wider audience, in particular group theorists, to the problem of classification of such surfaces, especially with regard to the problem of existence of real structures on them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Bauer and F. Catanese —Some new surfaces with pg = q = 0”, 2003, math. AG/0310150, to appear in the Proceedings of the Fano Conference (Torino 2002), U.M.I. FANO special Volume.

    Google Scholar 

  2. A. Beauville — Surfaces algébriques complexes, Société Mathématique de France, Paris, 1978, Astérisque, No. 54.

    Google Scholar 

  3. B. J. Birch and W. Kuyk (eds.) — Modular functions of one variable. IV, Springer-Verlag, Berlin, 1975, Lecture Notes in Mathematics, Vol. 476.

    MATH  Google Scholar 

  4. F. Catanese —Fibred surfaces, varieties isogenous to a product and related moduli spaces”, Amer. J. Math.122 (2000), no. 1, p. 1–44.

    MATH  MathSciNet  Google Scholar 

  5. —,Moduli spaces of surfaces and real structures”, Ann. of Math. (2) 158 (2003), no. 2, p. 577–592.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. S. M. Coxeter and W. O. J. Moser — Generators and relations for discrete groups, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 14, Springer-Verlag, Berlin, 1965.

    MATH  Google Scholar 

  7. J. Dieudonné —On the automorphisms of the classical groups”, Mem. Amer. Math. Soc., 1951 (1951), no. 2, p. vi+122.

    Google Scholar 

  8. B. Everitt —Alternating quotients of Fuchsian groups”, J. Algebra223 (2000), no. 2, p. 457–476.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Hartshorne — Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52.

    MATH  Google Scholar 

  10. B. Huppert — Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967.

    MATH  Google Scholar 

  11. B. Huppert and N. Blackburn — Finite groups. III, Grundlehren der Mathematischen Wissenschaften, vol. 243, Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

  12. V. S. Kulikov and V. M. Kharlamov —On real structures on rigid surfaces”, Izv. Ross. Akad. Nauk Ser. Mat.66 (2002), no. 1, p. 133–152.

    MathSciNet  MATH  Google Scholar 

  13. R. Miranda — Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, vol. 5, American Mathematical Society, Providence, RI, 1995.

    MATH  Google Scholar 

  14. M. Suzuki — Group theory. I, Grundlehren der Mathematischen Wissenschaften, vol. 247, Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

  15. H. Wielandt — Finite permutation groups, Academic Press, New York, 1964.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Bauer, I., Catanese, F., Grunewald, F. (2005). Beauville surfaces without real structures. In: Bogomolov, F., Tschinkel, Y. (eds) Geometric Methods in Algebra and Number Theory. Progress in Mathematics, vol 235. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4417-2_1

Download citation

Publish with us

Policies and ethics