Skip to main content

Visualizing Crowd Movement Patterns Using a Directed Kernel Density Estimation

  • Chapter
  • First Online:
Earth Observation of Global Changes (EOGC)

Abstract

“Classic” kernel density estimations (KDE) can display static densities representing one point in time. It is not possible to visually identify which parts of the densities are moving. Therefore, within this paper we investigate how to display dynamic densities (and the density changes) to identify movement patterns. To deal with a temporal dimension (in our case study a dynamic crowd of individuals) we investigated the application of directed kernel density estimation (DKDE). In a case study we apply the DKDE to a point dataset presenting individuals approaching the Allianz Arena in Munich, Germany, with different speeds from different directions. Calculating the density using a directed kernel with this data, results in a density map indicating the movement direction with a visible “ripple” effect. Ripples move at different rates to the substances in which they occur. That tells us something about crowd dynamics and enables us to visually recognize the parts of the crowds that are moving plus the underlying movement directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade EL, Blunsden S, Fisher RB (2006) Hidden markov models for optical flow analysis in crowds. In: International conference on pattern recognition (ICPR) (pp 460–463)

    Google Scholar 

  • Andrienko G, Andrienko N, Demsar U, Dransch D, Dykes J, Fabrikant SI, Jern M, Kraak M-J, Schumann H, Tominski C (2010) Space, time and visual analytics. Int J Geogr Inf Sci 24(10):1577–1600

    Article  Google Scholar 

  • Andrienko G, Andrienko N, Jankowski P, Keim D, Kraak M-J, MacEachren A, Wrobel S (2007) Geovisual analytics for spatial decision support: setting the research agenda. Int J Geogr Inf Sci 21(8):839–857

    Article  Google Scholar 

  • Assent I, Krieger R, Mueller E, Seidl T (2007) VISA: visual subspace clustering analysis. SIGKDD Explorations 9(2): 

    Article  Google Scholar 

  • Batty M (2009) Defining density. Environ Planning B: Planning Design 36:571–572

    Article  Google Scholar 

  • Burkert F, Butenuth M (2011) Event detection based on a pedestrian interaction graph using hidden markov models. In: Stilla U, Rottensteiner F, Mayer H, Jutzi B, Butenuth M (eds) Photogrammetric image analysis, lecture notes in computer science 6952. Springer, New York, pp 271–283

    Chapter  Google Scholar 

  • Burkert F, Schmidt F, Butenuth M, Hinz S (2010) People tracking and trajectory interpretation in aerial image sequences. Int Arch Photogram, Remote Sens Spat Inf Sci 39(3):209–214

    Google Scholar 

  • Butenuth M, Reinartz P, Lenhart D, Rosenbaum D, Hinz S (2009) Analysis of image sequences for the detection and monitoring of moving traffic. PFG—Photogram Fernerkundung Geoinf 5:421–430

    Article  Google Scholar 

  • Cressie N (1993) Statistics for spatial data (revised edition ed), Wiley, New York

    Google Scholar 

  • Dykes J, MacEachren AM, Kraak MJ (2005a) Advancing geovisualization. In: Dykes J, MacEachren AM, Kraak MJ (eds) Exploring geovisualization. Elseviers, Amsterdam, pp 693–967

    Google Scholar 

  • Dykes J, MacEachren AM, Kraak MJ (2005b) Exploring geovisualization. Elsevier, Amsterdam

    Google Scholar 

  • Hinz S (2009) Density and motion estimation of people in crowded environments based on aerial image sequences. Int Arch Photogram, Remote Sens Spat Inf Sci 38 (Part 1-4-7/W5, on CD)

    Google Scholar 

  • Krisp J, Peters S (2011) Directed Kernel density estimation (DKDE). Annals of GIS 17(3):155–162 

    Article  Google Scholar 

  • Krisp JM (2010) Planning fire and rescue services by visualizing mobile phone density. J Urban Technol 17(1):61–69

    Article  Google Scholar 

  • Krisp JM, Špatenková O (2010) Kernel density estimations for visual analysis of emergency response data. In: Konecny M, Zlatanova S, Bandrova TL (eds) Geographic information and cartography for risk and crisis management. Springer, Berlin, pp 395–408

    Chapter  Google Scholar 

  • Kurz F, Müller R, Stephani M, Reinartz P, Schroeder M (2007) Calibration of a wide-angle digital camera system for near real-time scenarios. In: Proceedings high resolution earth imaging for geospatial information

    Google Scholar 

  • Kwan M-P (2003) Geovisualisation of activity-travel patterns using 3D geographical information systems. In: 10th international conference on travel behaviour research (pp. pages pending), Lucerne

    Google Scholar 

  • Langford M, Unwin DJ (1994) Generating and mapping population density surfaces within a geographical information system. Cartographic J 31:21–26

    Article  Google Scholar 

  • MacEachren A, Kraak M-J (2001) Research challenges in geovisualization. Cartography Geoinf Sci 28(1):3–12

    Article  Google Scholar 

  • Maciejewski R, Rudolph S, Hafen R, Abusalah A, Yakout M, Ouzzani M, Cleveland WS, Grannis SJ, Ebert DS (2010) A visual analytics approach to understanding spatiotemporal hotspots. IEEE Trans Visual Comput Graphics 16(2):205–220

    Article  Google Scholar 

  • Martin D, Bracken I (1991) Techniques for modelling population-related roster databases. Environ Plan A 23(7):1069–1075

    Article  Google Scholar 

  • Nakaya T, Yano K (2010) Visualising crime clusters in a space-time cube: an exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Trans GIS 14(3):223–239

    Article  Google Scholar 

  • O’Sullivan D, Unwin DJ (2003) Geographic information analysis. Wiley, New Jersey

    Google Scholar 

  • Pellegrini S, Ess A, Van Gool L (2010) Improving data association by joint modeling of pedestrian trajectories and grouping. In lecture notes in computer science LNCS, 6311, 452–465

    Google Scholar 

  • Peters S, Krisp JM (2010) Density calculation for moving points. In 13th Agile international conference on geographic information science, 10–14 May 2010, Guimarães, Portugal

    Google Scholar 

  • Ratcliffe J, McCullagh MJ (1999) Hotbeds of crime and the search for spatial accuracy. J Geogr Syst 1:385–398

    Article  Google Scholar 

  • Scott DW (1992) Mulivariate density estimation. Wiley, London

    Book  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Google Scholar 

  • Thomas JJ, Cook K (2005) Illuminating the path: the research and development agenda for visual analytics. National visualization and analytics center, http://nvac.pnl.gov/agenda.stm

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley Publishing Co, Reading

    Google Scholar 

  • Zhan B, Monekesso D, Remagnino P, Velastin SA, Xu L (2008) Crowd analysis: a survey. Mach Vis Appl 19(5–6):345–357

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Matthias Butenuth for his valuable comments in the preparation of this paper, especially sharing his expertise in the acquisition process of the population data. This research has been partly supported by the TUM IGSSE project 7.07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka M. Krisp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krisp, J.M., Peters, S., Burkert, F. (2013). Visualizing Crowd Movement Patterns Using a Directed Kernel Density Estimation. In: Krisp, J., Meng, L., Pail, R., Stilla, U. (eds) Earth Observation of Global Changes (EOGC). Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32714-8_17

Download citation

Publish with us

Policies and ethics