Skip to main content

Vision-Based Terrestrial Surface Monitoring

  • Chapter
  • First Online:
Terrigenous Mass Movements

Abstract

The monitoring of geo-risk areas is getting more and more importance due to increasing damage caused by hazardous events such as rock slides, as a result of the environmental change. Terrestrial long-range sensing (up to several kilometres of distance between sensor and target region) is a valuable means for monitoring such sites using non-signalized targets in high resolution, which is necessary to detect regions, amount, direction and trends of motion early enough to take risk mitigation measures. The technology to realize such a sensing strategy combines various fields of research, such as sensor technology, surveying, computer vision and geological sciences. This chapter describes two vision-based sensing techniques suited for terrestrial surface monitoring (terrestrial laser scanning, and image-based tacheometers), and their sensing strategies, data processing and data exploitation issues. Examples for monitoring frameworks are given, and technical and engineering solutions are described. A set of applications from permafrost, glacier and snow cover monitoring, as well as rock fall site monitoring shows the relevance, technologic maturity and limits of existing approaches. Rock falls and other geo-hazards being the major fields of application for such systems, the chances of saving lives, protecting infrastructure and habitats and avoiding injury to field personnel are increased so that the better and more accurate event can be monitored. The research and technology described in this chapter will help the surveying, photogrammetry and computer vision community fighting global warming impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course an active system such as Radar Interferometry is not prone to such restrictions.

References

  • Abellán A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazards Earth Syst Sci 9:365–372

    Article  Google Scholar 

  • Alba M, Bernardini G, Giussani A, Ricci PP, Roncoroni F, Scaioni M, Valgoi P, Zhang K (2008) Measurement of dam deformations by terrestrial interferometric techniques. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVII (part B1):133–139

    Google Scholar 

  • Auer I, Böhm R, Leymüller M, Schöner W (2002) Das Klima des Sonnblicks—Klimaatlas and Klimageographie der GAW-Station Sonnblick einschließlich der umgebenden Gebirgsregion. Österreichische Beiträge zur Meteorologie und Geophysik 28:305

    Google Scholar 

  • Avian M, Bauer A (2005) The use of long range laser scanners in terrestrial monitoring of glacier dynamics, Pasterze glacier (Hohe Tauern, Austria). Geophys Res Abstr 7:06779 (European Geosciences Union General Assembly, Vienna, Austria. 24–29 Apr 2005)

    Google Scholar 

  • Avian M, Kaufmann V, Lieb GK (2005a) Recent and Holocene dynamics of a rock glacier system: the example of Langtalkar (Central Alps, Austria). Nor J Geogr 59:149–156

    Article  Google Scholar 

  • Avian M, Bauer A, Lieb GK (2005b) Monitoring modification of alpine environments: new techniques and perspectives. In: 3rd symposium of the Hohe Tauern National Park for research in protected areas, Kaprun, Salzburg, 15–17 Sept 2005

    Google Scholar 

  • Baltsavias EP, Favey E, Bauder A, Boesch H, Pateraki M (2001) Digital surface modelling by airborne laser scanning and digital photogrammetry for glacier monitoring. Photogramm Rec 17(98):243–273

    Article  Google Scholar 

  • Bauer A, Paar G (1999) Elevation modeling in real time using active 3D sensors. In: Proceedings of the 23rd workshop of the Austrian association for pattern recognition, AAPR, Robust vision for industrial applications 1999, Steyr, Austria, 27–28 May 1999, Schriftenreihe der Österreichischen Computer Gesellschaft, vol 128, pp 89–98

    Google Scholar 

  • Bauer A, Paar G (2004) Monitoring von Schneehöhen mittels terrestrischem Laserscanner zur Risikoanalyse von Lawinen. In: Proceedings of the 14th international course on engineering surveying, Zurich, Switzerland, 15–19 Mar 2004

    Google Scholar 

  • Bauer A, Paar G, Kaufmann V (2003) Terrestrial laser scanning for rock glacier monitoring. In: Phillips M, Springman SM, Arenson LU (eds) Proceedings of the 8th international permafrost conference, Zurich, pp 55–60

    Google Scholar 

  • Bauer A, Kellerer-Pirklbauer A, Avian M, Kaufmann V (2005a) Five years of monitoring the front slope of the highly active Hinteres Langtal rock glacier using terrestrial laser scanning: a case study in the Central Alps, Austria, Terra Nostra. In: 2nd European conference on Permafrost, vol 91, Potsdam

    Google Scholar 

  • Bauer A, Paar G, Kaltenböck A (2005b) Mass movement monitoring using terrestrial laser scanner for rock fall management. In: Proceedings of the 1st international symposium on geo-information for disaster management, Delft, The Netherlands. Springer, Berlin, pp 393–406

    Google Scholar 

  • Bauer J, Sünderhauf N, Protzel P (2007) Comparing several implementations of two recently published feature detectors. In: Proceedings of the international conference on intelligent and autonomous systems, IAV, Toulouse

    Google Scholar 

  • Bay H, Ess A, Tuytelaars T, Van Gool L (2008) SURF: speeded up robust features. Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  • Benn DI, Evans DJA (1998) Glaciers and glaciation. Arnold, London, p 734

    Google Scholar 

  • Bitelli G, Dubbini M, Zanutta A (2004) Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. In: Proceedings of the XXth ISPRS congress, vol XXXV, part B5, Istanbul, pp 246–251

    Google Scholar 

  • Bodin X, Schoeneich P, Jaillet S (2008) High resolution DSM extraction from terrestrial LIDAR topometry and surface kinematics of the creeping alpine permafrost: the Laurichard Rockglacier case study (French Southern Alps). In: Kane DL, Hinkel KM (eds) Ninth international conference on permafrost, Institute of Northern Engineering, University of Alaska at Fairbanks, vol 1, pp 137–142

    Google Scholar 

  • Delaloye R, Perruchoud E, Avian M, Kaufmann V, Bodin X, Ikeda A, Hausmann H, Kääb A, Kellerer-Pirklbauer A, Krainer K, Lambiel C, Mihajlovic D, Staub B, Roer I, Thibert E (2008) Recent interannual variations of Rockglaciers creep in the European Alps. In: 9th international conference on permafrost, Fairbanks, Alaska, 29 June–03 July 2008, pp 343–348

    Google Scholar 

  • Dorren L (2003) A review of rock fall mechanics and modelling approaches. Prog Phys Geogr 27(1):69–87

    Article  Google Scholar 

  • Fischer A, Span N (2005) A volume inventory of glaciers in the Austrian Alps. European Geosciences Union (EGU), second assembly, Vienna, 24–29 Apr 2005, CD-ROM

    Google Scholar 

  • Geist T, Lutz E, Stötter J (2003) Airborne laser scanning technology and its potential for applications in glaciology. In: Proceedings of the ISPRS workshop on 3-D reconstruction from airborne laserscanner and INSAR data, Dresden, pp 101–106

    Google Scholar 

  • hds.leica-geosystems.com (2010) Official web-site of Leica Geosystems. Accessed 29 Jan 2010

  • Hsiao KH, Yu MF, Liu JK, Tseng YH (2003) Change detection of landslide terrains using ground-based lidar data. In: Proceedings of 2003 annual symposium of the society of Chinese association of geographic information

    Google Scholar 

  • Jaboyedoff M, Ornstein P, Rouiller JD (2004) Design of a geodetic database and associated tools for monitoring rock-slope movements: the example of the top of Randa rock fall scar. Nat Hazards Earth Syst Sci 4:187–196

    Google Scholar 

  • Kääb A (2002) Monitoring high-mountain terrain deformation from digital aerial imagery and ASTER data. ISPRS J Photogramm Remote Sens 57:39–52 (1–2 Novemb 2002)

    Google Scholar 

  • Kääb A, Kaufmann V, Ladstädter R, Eiken T (2003) Rock glacier dynamics: implications from high-resolution measurements of surface velocity fields. In: Proceedings of the eighth international conference on permafrost, vol 1, 21–25 July 2003, Zurich, Switzerland, pp 501–506

    Google Scholar 

  • Kane WF, Beck TJ (2000) Instrumentation practice for slope monitoring. In: Engineering geology practice in Northern California. association of engineering geologists Sacramento and San Francisco sections

    Google Scholar 

  • Kaufmann V, Ladstaedter R (2000) Spatio-temporal analysis of the dynamic behaviour of the Hochebenkar rock glaciers (Oetztal Alps, Austria) by means of digital photogrammetric methods. In: Proceedings of the 6th international symposium on high mountain remote sensing cartography, Grazer Schriften der Geographie und Raumforschung, Band 37, Institute of Geography and Regional Sciences, University of Graz, pp 119–139

    Google Scholar 

  • Kaufmann V, Ladstaedter R (2003) Quantitative analysis of rock glacier creep by means of digital photogrammetry using multi-temporal aerial photographs: two case studies in the Austrian Alps. In: Proceedings of the eighth international conference on permafrost, vol 1, 21–25 July, Zurich, Switzerland. Balkema Publishers, Rotterdam, pp 525–530

    Google Scholar 

  • Kaufmann V, Ladstädter R (2004a) Documentation of the movement of the Hinteres Langtalkar rock glacier. In: Proceedings of the 20th congress of the international society for photogrammetry and remote sensing, vol 35, part B7, Istanbul, Turkey, 12–23 July 2004, IAPRS, pp 893–898

    Google Scholar 

  • Kaufmann V, Ladstädter R (2004b) Terrestrisch-photogrammetrische Dokumentation des Gletscherrückgangs am Gößnitzkees (Schobergruppe, Nationalpark Hohe Tauern). Pangeo 2004, Graz, 24–26 Sept 2004, Beitrags-Kurzfassungen, Erdwissenschaften und Öffentlichkeit, vol 9, pp 240–242

    Google Scholar 

  • Kaufmann V, Ladstädter R (2004c) Documentation of the retreat of a small debris-covered cirque glacier Goessnitzkees, Austrian Alps by menas of terrestrial photogrammetry. In: Proceedings of the 4th ICA mountain cartography workshop, Vall de Nuria, Catalonia, Spain, 30 Sept–02 Oct 2004, pp 65–76

    Google Scholar 

  • Kaufmann V, Kenyi LW, Avian M (2005) Messung der Fließgeschwindigkeit von Gletschern mittels satellitengestützter Radar-Interferometrie in der Schobergruppe (Nationalpark Hohe Tauern, Kärnten). Endbericht zum Forschungsprojekt (Projektleiter V. Kaufmann) des Kärntner Nationalparkfonds, Institut für Fernerkundung und Photogrammetrie, TU Graz, p 59

    Google Scholar 

  • Kellerer-Pirklbauer A (2008) The supraglacial debris system at the Pasterze glacier, Austria: spatial distribution, characteristics and transport of Debris. Z Geomorph NF 52(Suppl 1):3–25

    Article  Google Scholar 

  • Kellerer-Pirklbauer A, Bauer A, Proske H (2005) Terrestrial laser scanning for glacier monitoring: Glaciation changes of the Gößnitzkees glacier (Schober group, Austria) between 2000 and 2004. Third symposion of the Hohe Tauern national park for research in protected areas, Kaprun, Austria, 15–17 Sept 2005, pp 97–106

    Google Scholar 

  • Kenyi LW, Kaufmann V (2003a) Estimation of rock glacier surface deformation using SAR interferometry data. IEEE Trans Geosci Remote 41(6):1512–1515

    Article  Google Scholar 

  • Kenyi LW, Kaufmann V (2003b) Measuring rock glacier surface deformation using SAR interferometry. In: Proceedings of the 8th international permafrost conference, vol 1, Zurich, Switzerland, 21–25 July. Balkema Publishers, Lisse, pp 537–541

    Google Scholar 

  • Kienast G, Kaufmann V (2004) Geodetic measurements on glaciers and rock glaciers in the Hohe Tauern National park (Austria). In: Proceedings of the 4th ICA mountain cartography workshop, Vall de Núria, Catalonia, Spain, 30 Sept–2 Oct 2004, Monografies tècniques 8, Institut Cartogràfic de Catalunya, Barcelona, pp 101–108

    Google Scholar 

  • Krainer K, Mostler W (2000) Reichenkar rock glacier: a glacier derived debris-ice-system in the Western Stubai Alps, Austria. Permafr Periglac Proc 11:267–275

    Article  Google Scholar 

  • Krobath M (2003) Gletscherschwund—Wasserland Steiermark 3:18–23

    Google Scholar 

  • Kweon IS, Kanade T (1992) High-resolution terrain map from multiple sensor data. IEEE Trans Pattern Anal Mach Intell 14(2):278–292

    Article  Google Scholar 

  • Lambrecht A, Würländer R, Kuhn M (2005) The new Austrian glacier inventory: a tool for the analysis of modern glacier change. European Geosciences Union (EGU), second assembly, Vienna, 24–29 Apr 2005, CD-ROM

    Google Scholar 

  • Lehmann M, Reiterer A, Huber NB, Bauer A (2009) An automated optical rockfall monitoring system. In: 9th conference on optical 3-D measurement techniques, vol 1, Vienna, 2009, pp 91–101

    Google Scholar 

  • Leva D, Nico G, Tarchi D, Fortuny-Guasch J, Sieber AJ (2003) Temporal analysis of a landslide by means of a ground-based SAR interferometer. GeoRS 41(4):745–752 (Apr 2003)

    Google Scholar 

  • Lieb GK (1991) Die horizontale und vertikale Verbreitung von Blockgletschern in den Hohen Tauern (Österreich). Zeitschrift für Geomorphologie NF 35(3):345–365

    Google Scholar 

  • Lieb GK (2000) Die Flächenänderung von Gößnitz- und Hornkees (Schobergruppe, Hohe Tauern) von 1850 bis 1997. Festschrift für Heinz Slupetzky zum 60. Geburtstag, Salzburger Geographische Arbeiten 36:83–96

    Google Scholar 

  • Lieb GK, Kaufmann V, Avian M (2004) Das Hintere Langtalkar (Schobergruppe, Nationalpark Hohe Tauern)—ein Beispiel für die komplexe Morphodynamik in der Hochgebirgsstufe der Zentralalpen. Mitt d Österr Geogr 146:147–164 (Gesellschaft, Wien)

    Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  • Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  • Mischke A, Kahmen H, (1997) A new kind of measurement robot system for surveying of non signalized targets. In: Optical 3-D measurement techniques, vol IV. Herbert Wichmann, Karlsruhe

    Google Scholar 

  • Nakawo M, Raymond CF, Fountain A (eds) (2000) Debris-covered glaciers. In: Proceedings of an international workshop held at the University of Washington in Seattle, vol 264, Washington, 13–15 Sept 2000. IAHS publication, Wallingford, p 288

    Google Scholar 

  • Oppikofer T, Jaboyedoff M, Blikra L, Derron M-H, Metzger R (2009) Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1003–1019

    Article  Google Scholar 

  • Paar G, Almer A (1993) Fast hierarchical stereo reconstruction. In: Proceedings of the 2nd conference on optical 3-D measurement techniques, Zurich, Switzerland, pp 460–466

    Google Scholar 

  • Paar G, Bauer A (2001) Terrestrial long range laser scanning for high density snow cover measurement. In: Proceedings of the 5th conference on optical 3D measurement techniques. Vienna, pp 33–40

    Google Scholar 

  • Paar G, Pölzleitner W (1992) Robust disparity estimation in terrain modelling for spacecraft navigation. In: Proceedings 11th ICPR, international association for pattern recognition, pp 738–741

    Google Scholar 

  • Paar G, Nauschnegg B, Ullrich A (2000) Laser scanner monitoring—technical concepts, possibilities and limits. Workshop on advances techniques for the assessment of natural hazards in mountain areas, Igls, Austria, 4–6 June

    Google Scholar 

  • Patzelt G (1980) The Austrian glacier inventory: status and first results. In: Workshop proceedings, vol 126. IAHS, Riederalp, pp 267–280

    Google Scholar 

  • Patzelt G (2005) Gletscherbericht 2003/2004: Sammelbericht über die Gletschermessungen des Österreichischen Alpenvereins im Jahre 2004. Mitteilungen des Österreichischen Alpenvereins 60(2):24–31

    Google Scholar 

  • Pfeifer N, Lichti D (2004) Terrestrial laser scanning: developments, applications and challenges. GIM International 18(12):50–53 (Dec 2004)

    Google Scholar 

  • Prokop A, Schirmer M, Rub M, Lehning M, Stocker M (2007) A comparison of measurement methods: terrestrial laser scanning, tachymetry and snow probing, for the determination of the spatial snow depth distribution on slopes. In: International symposium of snow science. Moscow

    Google Scholar 

  • Reiterer A (2004) Knowledge-based decision system for an on-line videotheodolite-based multisensor system. PhD thesis, Vienna University of Technology

    Google Scholar 

  • Reiterer A, Kahmen H, Egly U, Eiter T (2003) 3D-Messverfahren mit Videotheodoliten und automatisierte Zielpunkterfassung mit Hilfe von Interest Operatoren. Allgemeine Vermessungs-Nachrichten 110:150–156

    Google Scholar 

  • Reiterer A, Lehmann M, Miljanovic M, Ali H, Paar G, Egly U, Eiter T, Kahmen H (2009) A 3D optical deformation measurement system supported by knowledge-based and learning techniques. J Appl Geodesy 3:1–13

    Article  Google Scholar 

  • Roer I, Avian M, Delaloye R, Lambiel C, Dousse JP, Bodin X, Thibert E, Kääb A, Kaufmann V, Damm B, Langer M (2005) Rock glacier “speed-up” throughout European Alps—a climatic signal? In: Proceedings of the second european conference on permafrost, Potsdam, Germany, 12–16 June 2005, pp 101–102

    Google Scholar 

  • Roic M (1996) Erfassung von nicht signalisierten 3D-Strukturen mit Videotheodoliten. Dissertation, TU-Wien

    Google Scholar 

  • Scheikl M, Angerer H, Dölzlmüller J, Poisel R, Poscher G (2000a) Multidisciplinary monitoring demonstrated in the case study of the Eiblschrofen rock fall. Felsbau 18(1):24–29

    Google Scholar 

  • Scheikl M, Poscher G, Grafinger H (2000b) Application of the new automatic laser remote monitoring system (ALARM) for the continuous observation of the mass movement at the Eiblschrofen rockfall area—Tyrol. Workshop on advances techniques for the assessment of natural hazards in mountain areas, Igls, Austria, 4–6 June 2000

    Google Scholar 

  • Scherer M (2004) Intelligent scanning with robot-tacheometer and image processing—a low cost alternative to 3D laser scanning? In: FIG working week 2004, Athens, Greece, 22–27 May, pp 1–12

    Google Scholar 

  • Sharov A, Gutjahr K (2002) Some methodological enhancements to INSAR surveying of polar ice caps. In: Begni G (ed) Observing our environment from space. Proceedings of the 21st EARSeL symposium in Paris, 14–16 May 2001. Balkema, Lisse, pp 65–72

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) IPCC: climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Steffan H, Bauer A, Schaffhauser H, Randeu W (2001) SAMPLE—Snow avalanche monitoring and prognosis by laser equipment. Final report. EU target area II regional support funded, Styrian Government ref. AAW 11 L 6 97/5

    Google Scholar 

  • Teskey WF (1985) Determining deformation by combining measurement data with structural data. In: Teskey WF, Gruendig L (eds) Papers for the precise engineering and deformation surveys workshop, Calgary Alberta

    Google Scholar 

  • Vicovac T, Reiterer A, Egly U, Eiter T, Rieke-Zapp D (2009) First development steps for an automated knowledge-based deformation interpretation system. In: Grün A, Kahmen H (eds) Optical 3-D measurement techniques IX, vol 1, Zurich, Switzerland, pp 61–90

    Google Scholar 

  • Wakonigg H, Lieb GK (1996) Die Pasterze und ihre Erforschung im Rahmen der Gletschermessungen. Kärntner Nationalparkschriften 8, Großkirchheim, pp 99–115

    Google Scholar 

  • Walser B (2004) Development and calibration of an image assisted total station. Dissertation, ETH-Zürich

    Google Scholar 

  • Wasmeier P (2009) Grundlagen der Deformationsbestimmung mit Messdaten bildgebender Tachymeter. Dissertation, TU-München

    Google Scholar 

  • Welsch W, Heunecke O, Kuhlmann H (2000) Auswertung geodätischer Überwachungsmessungen. Wichmann, Heidelberg

    Google Scholar 

  • Würländer R, Kuhn M (2000) Zur Erstellung und Anwendung der Produkte des neuen Österreichischen Gletscherkatasters. Festschrift für Heinz Slupetzky zum 60. Geburtstag, Salzburger Geographische Arbeiten 36:57–67

    Google Scholar 

  • www.3dlasermapping.com (as from 8 Dec 2011)

  • www.dibit-scanner.at: official web-site of DIBIT GeoScanner (as from 8 Dec 2011)

  • www.ilf.com: official web-site of ILF Consulting Engineers (as from 8 Dec 2011)

  • www.joanneum.at: official web-site of JOANNEUM RESEARCH (as from 8 Dec 2011)

  • www.riegl.co.at: official web-site of Riegl Laser Measurement Systems (as from 8 Dec 2011)

  • www.topcon.eu: official web-site of Topcon Europe Positioning B.V. (as from 8 Dec 2011)

  • www.trimble.com: official web-site of Trimble Measurement Systems (as from 8 Dec 2011)

Download references

Acknowledgments

The content of this chapter was produced in multiple research projects which deserve further mentioning. Namely the i-MeaS—“An Intelligent Image-Based Measurement system for Geo-Hazard Monitoring” project (info.tuwien.ac.at/ingeo/research/imeas) which is funded by the Austrian Science Fund (Fond zur Förderung der wissenschaftlichen Forschung Österreich, FWF) (project number: L514), the project ALPCHANGE (www.alpchange.at) also funded by the FWF (project number P18304-N10) and the “K plus program” of “K plus Competence Center Advanced Computer Vision” together with FWF Project P14664. Furthermore we kindly acknowledge the help of Viktor Kaufmann (Institute of Remote Sensing and Photogrammetry, Graz University of Technology) for providing data from geodetic surveys and kindly reviewing this chapter. Viktor Kaufmann, Gerhard Karl Lieb, Andreas Kellerer-Pirklbauer-Eulenstein and Herwig Proske provided valuable source material from related publications, this is very much appreciated. We also thank students of the Institute of Geography and Regional Science, University of Graz and the Institute of Remote Sensing and Photogrammetry, Graz University of Technology, Austria as well as several volunteers of the National Park Hohe Tauern for their support during field campaigns. Last but not least we thank our important research partners and funding sources Joanneum Research (www.joanneum.at) and Dibit Messtechnik GmbH (www.dibit-scanner.at).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Paar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paar, G., Huber, N.B., Bauer, A., Avian, M., Reiterer, A. (2012). Vision-Based Terrestrial Surface Monitoring. In: Pradhan, B., Buchroithner, M. (eds) Terrigenous Mass Movements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25495-6_10

Download citation

Publish with us

Policies and ethics