Skip to main content

Advanced Design Techniques for RF Power Amplifiers

  • Book
  • © 2006

Overview

  • Deep theoretical analysis of RF high-efficiency power amplifiers
  • Modelling and design strategies of RF high-efficiency power amplifiers
  • Theoretical aspects of RF high-efficiency power amplifiers and simulation tutorial
  • Comprehensive nonlinear power amplifiers simulation tutorial

Part of the book series: Analog Circuits and Signal Processing (ACSP)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (5 chapters)

Keywords

About this book

Advanced Design Techniques for RF Power Amplifiers' main aim is to provide the reader with a deep analysis of theoretical aspects, modelling, and design strategies of RF high-efficiency power amplifiers. Advanced Design Techniques for RF Power Amplifiers begins with an analytical review of current state of the problem. Then it moves to the theoretical analysis of BJT class-F power amplifier near transition frequency and presents the necessary realization conditions. The next part concerns the practical verification and demonstration of the theoretical results. It is followed by the part devoted to the output networks of high-efficiency power ampifiers. The novel type of photonic band-gap structure providing improved characteristics both in the pass and stop bands is proposed. Finally, the fifth-harmonic peaking class F power amplifier design based on the above structure is presented.

Authors and Affiliations

  • Donetsk National University, Ukraine

    Anna Rudiakova, Vladimir Krizhanovski

Bibliographic Information

Publish with us