Skip to main content
Log in

Fragmentability in banach spaces: Interaction of topologies

Fragmentabilidad en espacios de Banach: interacción entre topologías

  • Published:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

Let (X, τ) be a topological space and let ρ be a metric on X. Then one occasionally encounters the following situation: For each ε > 0 and a non-empty subset AX, there exists a τ-open subset U of X such that UA = ϕ and ρ-diameter of UA is less than ∈. If this is the case then (X, \gt) is said to be fragmented by \gr. For instance a weakly compact subset of a Banach space with the weak topology is fragmented by the norm metric, and this fact has many consequences. For non-compact spaces, the natural analog of fragmentability is \gs-fragmentability. In this exposition, these two notions are examined and their applications are described.

Resumen

Cuando en un espacio topológico (X, τ) tenemos además una métrica ρ, a veces la siguiente situación se presenta: para cada ∈ > 0 y para cada conjunto AX, existe un subconjunto τ-abierto U de X tal que UA = ϕ y ρ-diámetro de UA es menor que ∈. Si este último es el caso, (X, τ) se dice que está fragmentado por ρ. Por ejemplo, los subconjuntos débilmente compactos de un espacio de Banach con su topología débil están fragmentados por la métrica asociada a la norma: este resultado tiene muchas consecuencias. Para espacios que no son compactos, el análogo natural de la noción de fragmentabilidad es la noción σ-fragmentabilidad. En este artículo expositivo, analizamos las nociones de fragmentabilidad y σ-fragmentabilidad así como aplicaciones de las mismas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arhangel’skii, A. V., (1992). C p -theory, Recent Progress in General Topology, North-Holland.

    Google Scholar 

  2. Arhangel’skii, A. V., (1995). General Topology II, Encyclopaedia of Mathematical Science, 50, Springer.

  3. Arvanitakis, A. D., (2002). Some remarks on Radon Nikodým compact spaces, Fund. Math., 172, 41–60.

    Article  MATH  MathSciNet  Google Scholar 

  4. Asplund, E., (1968). Fréchet differentiability of convex functions, Acta Math., 121, 1, 31–47. DOI: 10.1007/ BF02391908

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourgin, R. D., (1983). Geometric Aspects of Convex Sets with the Radon-Nikodým Property, LNM, Springer-Verlag, 993.

  6. Bouziad, A., (1990). Une classe d’espaces co-Namioka, C. R. Acad. Sci. Paris, 310, 779–782.

    MATH  MathSciNet  Google Scholar 

  7. Bouziad, A., (1994). Notes sur la propriéte de Namioka, Trans. Amer. Math. Soc., 344, 2, 873–883. DOI: 10.2307/2154513

    Article  MATH  MathSciNet  Google Scholar 

  8. Bouziad, A., (1996). The class of co-Namioka spaces is stable under product, Proc. Amer. Math. Soc., 124, 983–986.

    Article  MATH  MathSciNet  Google Scholar 

  9. Cascales, B. and Namioka, I., (2003). The Lindelöf property and σ-fragmentability, Fund. Math., 180, 161–183. DOI: 10.4064/fm180-2-3

    Article  MATH  MathSciNet  Google Scholar 

  10. Cascales, B.; Namioka, I. and Vera, G., (2000). The Lindelöf property and fragmentability, Proc. Amer. Math. Soc., 128, 3301–3309.

    Article  MATH  MathSciNet  Google Scholar 

  11. Cascales, B.; Namioka, I. and Orihuela, J., (2003). The Lindelöf property in Banach spaces, Studia Math., 154, 165–192. DOI: 10.4064/sm154-2-4

    Article  MATH  MathSciNet  Google Scholar 

  12. Davis, W. J. and Phelps, R. R., (1974). The Radon-Nikodým property and dentable sets in Banach spaces, Proc. Amer. Math. Soc., 45, 119–122. DOI: 10.1090/S0002-9939-1974-0344852-7. DOI: 10.2307/2040618

    Article  MATH  MathSciNet  Google Scholar 

  13. Debs, G., (1986). Pointwise and uniform convergence on Corson compact spaces, Topology Appl., 23, 299–303. DOI: 10.1016/0166-8641(85)90047-1

    Article  MATH  MathSciNet  Google Scholar 

  14. Deville, R., (1989). Convergence ponctualle et uniforme sur un espace compact, Bull. Acad. Polon. Sci., 37, 7–12.

    MathSciNet  Google Scholar 

  15. Deville, R.; Godefroy, G. and Zizler, V., (1993). Smoothness and renormings in Banach spaces, Pitman Monographs in Pure and Applied Mathematics 64, Longman Scientific & Technical, Harlow.

    MATH  Google Scholar 

  16. Deville, R. and Godefroy, G., (1993). Some applications of projectional resolutions of identity, Proc. Lond. Math. Soc., 67, 183–199. DOI: 10.1112/plms/s3-67.1.183

    Article  MATH  MathSciNet  Google Scholar 

  17. Edgar, G. A., (1979). Measurability in a Banach space II, Indiana Univ. Math. J., 28, 559–579.

    Article  MATH  MathSciNet  Google Scholar 

  18. Fabian, M. J., (1997). Gâteaux Differentiability of Convex Functions and Topology, John Wiley & Sons, Inc., New York-Chichester-Wieinheim-Brisbane-Singapore-Toronto.

    MATH  Google Scholar 

  19. Gillman, L. and Jerison, M., (1976). Rings of Continuous Functions, Springer-Verlag, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  20. Glasner, S., (1975). Compressibility properties in topological dynamics, Amer. J. Math., 97, 148–171. DOI: 10.2307/2373665

    Article  MATH  MathSciNet  Google Scholar 

  21. Haydon, R. G.; Jayne, J. E.; Namioka, I. and Rogers, C. A., (2000). Continuous functions on totally ordered spaces that are compact in their order topologies, J. Funct. Anal., 178, 23–63. DOI: 10.1006/jfan.2000.3652

    Article  MATH  MathSciNet  Google Scholar 

  22. Huff, R. E., (1974). Dentability and the Radon-Nikodým property, Duke Math. J., 41, 111–114. DOI: 10.1215/ S0012-7094-74-04111-8

    Article  MATH  MathSciNet  Google Scholar 

  23. Jayne, J. E.; Namioka, I. and Rogers, C. A., (1990). Norm fragmented weak* compact sets, Collect. Math., 41, 133–163.

    MATH  MathSciNet  Google Scholar 

  24. Jayne, J. E.; Namioka, I. and Rogers, C. A., (1992). σ-fragmentable Banach spaces, Mathematika, 39, 161–188 and 197-215. DOI: 10.1112/S0025579300006926 and DOI: 10.1112/S0025579300014935

    Article  MATH  MathSciNet  Google Scholar 

  25. Jayne, J. E.; Namioka, I. and Rogers, C. A., (1993). Fragmentability and σ-fragmentability, Fund. Math., 143, 207–220.

    MATH  MathSciNet  Google Scholar 

  26. Jayne, J. E.; Namioka, I. and Rogers, C. A., (1993). Topological properties of Banach spaces, Proc. Lond. Math. Soc., 66, 651–672. DOI: 10.1112/plms/s3-66.3.651

    Article  MATH  MathSciNet  Google Scholar 

  27. Jayne, J. E. and Rogers, C. A., (1985). Borel selectors for upper semicontinuous set-valued maps, Acta. Math., 155, 41–79.

    Article  MATH  MathSciNet  Google Scholar 

  28. Kenderov, P. S. and Moors, W. B., (1999). Fragmentability and Sigma-fragmentability of Banach spaces, J. Lond. Math. Soc., 60, 203–223. DOI: 10.1112/S002461079900753X

    Article  MATH  MathSciNet  Google Scholar 

  29. Maynard, H. B., (1973). A geometric characterization of Banach spaces having the Radon-Nikodým property, Trans. Amer. Math. Soc., 85, 493–500.

    Article  MathSciNet  Google Scholar 

  30. Moltó, A.; Orihuela, J. and Troyanski, S., (1997). Locally uniformly rotund renorming and fragmentability, Proc. Lond. Math. Soc., 75, 619–640. DOI: 10.1112/S0024611597000452

    Article  MATH  Google Scholar 

  31. Moltó, A.; Orihuela, J.; Troyanski, S. and Valdivia, M., (2009). A Nonlinear Transfer Techinique for Renorming, LNM, Springer-Verlag, 1951.

  32. Namioka, I., (1987). Radon-Nikodým compact spaces and fragmentability, Mathematika, 34, 258–281. DOI: 10.1112/S0025579300013504

    Article  MATH  MathSciNet  Google Scholar 

  33. Namioka, I., (2001/02). On generalizations of Radon-Nikodým compact spaces, Topology Proc., 26, 741–750.

    MathSciNet  Google Scholar 

  34. Namioka, I. and Asplund, E., (1967). A geometric proof of Ryll-Nardzewski’s fixed point theorem, Bull. Amer. Math. Soc., 73, 443–445. DOI: 10.1090/S0002-9904-1967-11779-8

    Article  MATH  MathSciNet  Google Scholar 

  35. Namioka, I. and Phelps, R. R., (1975). Banach spaces which are Asplund spaces, Duke Math. J., 42, 735–750. DOI: 10.1215/S0012-7094-75-04261-1

    Article  MATH  MathSciNet  Google Scholar 

  36. Namioka, I. and Pol, R., (1992). Mappings of Baire spaces into function spaces and Kadec renorming, Israel J. Math., 78, 1–20. DOI: 10.1007/BF02801567

    Article  MATH  MathSciNet  Google Scholar 

  37. Namioka, I. and Pol, R., (1998). Sigma-fragmentability of mappings into C p (K), Topology Appl., 89, 249–263. DOI: 10.1016/S0166-8641(97)00217-4

    Article  MATH  MathSciNet  Google Scholar 

  38. Orihuela, J., (1992). On weakly Lindelöf Banach Spaces, Progress in Functional Analysis. Proceedings of the International Functional Analysis Meeting on the Occasion of the 60th Birthday of Professor M. Valdivia (Peñíscola 1990), 279–291, North-Holland Math. Stud., 170, North-Holland, Amsterdam. DOI: 10.1016/S0304-0208(08)70326-8

    Google Scholar 

  39. Orihuela, J.; Schachermayer, W. and Valdivia, M., (1991). Every Radon-Nikodým Corson compact is Eberlein compact, Studia Math., 98, 157–174.

    MATH  MathSciNet  Google Scholar 

  40. Phelps, R. R., (1993). Convex functions, monotone operators and differentiability, 2nd Ed., Lecture Notes in Mathematics 1364, Springer Verlag, Berlin-Heidelberg-New York etc.

    MATH  Google Scholar 

  41. Raja, M., (1999). Kadec norms and Borel sets in Banach spaces, Studia Math., 136, 1–16.

    MATH  MathSciNet  Google Scholar 

  42. Raja, M., (1999). Locally uniformly rotund norms, Mathematika, 46, 2, 343–358. DOI: 10.1112/S00255793 00007816

    Article  MATH  MathSciNet  Google Scholar 

  43. Reynov, O. I., (1981). On a class of Hausdorff compacts and GSG Banach spaces, Studia Math., 71, 113–126.

    MATH  MathSciNet  Google Scholar 

  44. Ribarska, N. K., (1987). Internal characterization of fragmentable spaces, Mathematika, 34, 243–257. DOI: DOI: 10.1112/S0025579300013498

    Article  MATH  MathSciNet  Google Scholar 

  45. Ribarska, N. K., (1998). Three space property for σ-fragmentability, Mathematika, 45, 1, 113–118. DOI: 10.1112/S0025579300014078

    Article  MATH  MathSciNet  Google Scholar 

  46. Rieffel, M., Dentable subsets of Banach spaces, with application to a Radon-Nikodým theorem, in Functional Analysis, Proc. Cont., Irvine, Calif., 1966, B. R. Gelbaum, ed., Academic Press, London-Thompson-Washington, D. C., 71–77.

    Google Scholar 

  47. Rogers, C. A. and Jayne, J. E., (1980). Analytic Sets, Part 1, K-analytic sets, Academic Press, 1-181.

  48. Ryll-Nardzewski, C., (1962). Generalized random ergodic theorem and weakly almost period functions, Bull. Acad. Polon. Sci., 10, 271–275.

    MATH  MathSciNet  Google Scholar 

  49. Stegall, C., (1975). The Radon-Nikodým property in conjugate Banach spaces, Trans. Amer. Math. Soc., 206, 213–223. DOI: 10.1090/S0002-9947-1975-0374381-1. DOI: 10.2307/1997154

    Article  MATH  MathSciNet  Google Scholar 

  50. Stegall, C., (1978). The duality between Asplund spaces and spaces with the Radon-Nikodým property, Israel J. Math., 29, 408–412. DOI: 10.1007/BF02761178

    Article  MATH  MathSciNet  Google Scholar 

  51. Troyanski, S. L., (1971). On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math., 37, 173–180.

    MATH  MathSciNet  Google Scholar 

  52. Troyanski, S. L., (1985). Construction of equivalent norms for certain local characteristics with rotundity and smoothness by means of martingales (Russian), Mathematics and mathematical education (Sunny Beach (Sl\rdnchev Bryag), 1985), 129-156, B\rdlgar. Acad. Nauk. Sofia.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Namioka.

Additional information

Dedicated with admiration to Professor Manuel Valdivia on the occasion of his 80th birthday

Submitted by Manuel López Pellicer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namioka, I. Fragmentability in banach spaces: Interaction of topologies. RACSAM 104, 283–308 (2010). https://doi.org/10.5052/RACSAM.2010.18

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.5052/RACSAM.2010.18

Keywords

Mathematics Subject Classifications

Navigation