Skip to main content
Log in

The influence of trap type on evaluating population structure of the semifossorial and social rodent Octodon degus

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

Trap type may influence captures of individuals in different age-sex categories in small mammal studies, resulting in biased population and demographic information. We deployed 4 live trap types at burrow systems of the rodent, Octodon degus Molina, 1782, in central Chile to determine trap efficacy in capturing individuals of 6 demographic categories. We captured 2672 individuals in 17 709 trap days (15.1% trapping success). Tomahawks were the most efficient trap capturing half of individuals during both years, followed by mesh Sherman traps, large Sherman traps, and medium Sherman traps in 2005. All trap types equally sampled sexes. Large and medium Sherman traps provided similar demographic structure, where half of the individuals captured were pups; Tomahawk traps sampled more adults than pups. Relative captures of pups were similar across different trap types, suggesting that pups are equally sampled by each of the deployed trap types. Relative captures of adults were lower in Sherman traps, suggesting that this age class avoided solid-walled traps. For Octodon degus, the sole use of Tomahawk traps may produce sufficient, unbiased demographic data. Only 4 trap mortalities occurred (0.15%). Researchers may minimize trap mortality without compromising sufficient demographic sampling by trapping during peak animal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony N. M., Ribic C. A., Bautz R. and Garland Jr T. 2005. Comparative effectiveness of Longworth and Sherman live traps. Wildlife Society Bulletin 33: 1018–1026. DOI: 10.2193/0091-7648(2005)33[1018:CEOLAS]2.0.CO;2

    Article  Google Scholar 

  • Barry Jr R. E., Fressola A. A. and Bruseo J. A. 1989. Determining the time of capture for small mammals. Journal of Mammalogy 70: 660–662.

    Article  Google Scholar 

  • Boonstra R. and Rodd F. H. 1982. Another potential bias in the use of the Longworth trap. Journal of Mammalogy 63: 672–675.

    Article  Google Scholar 

  • Bowman J., Corkum C. V. and Forbes G. 2001. Spatial scales of trapping in small mammal research. The Canadian Field-Naturalist 115: 472–475. DOI:10.1139/cjz-79-1-137

    Google Scholar 

  • Conard J. M., Baumgardt J. A., Gipson P. S. and Althoff D. P. 2008. The influence of trap density and sampling duration on the detection of small mammal species richness. Acta Theriologica 53: 143–156.

    Google Scholar 

  • Cooch E. G. and White G. 2008. Program Mark: a gentle introduction. Seventh edition. http://www.phidot.org/software/ mark/index.html

  • Ebensperger L. A., Chesh A. S., Castro R. A., Ortiz Tolhuysen L., Quirici V., Burger J. R. and Hayes L. D. 2009. Instability rules social groups in the communal breeder rodent Octodon degus. Ethology 115: 540–554. DOI: 10.1111/j.1439-0310.2009.01635.x

    Article  Google Scholar 

  • Ebensperger L. A. and Hurtado M. J. 2005. Seasonal changes in the time budget of degus, Octodon degus. Behaviour 142: 91–112. DOI: 10.1163/1568539053627703

    Article  Google Scholar 

  • Ebensperger L. A., Hurtado M. J., Soto-Gamboa M., Lacey E. A. and Chang A. T. 2004. Communal nesting and kinship in degus (Octodon degus). Naturwissenchaften 91: 391–395. DOI: 10.1007/s00114-004-0545-5

    Article  CAS  Google Scholar 

  • Flaquer C., Torre I. and Arrizabalaga A. 2007. Comparison of sampling methods for inventory of bat communities. Journal of Mammalogy 88: 526–533. DOI: 10.1644/06-MAMM-A-135R1.1

    Article  Google Scholar 

  • Fulk G. W. 1976. Notes on the activity, reproduction, and social behavior of Octodon degus. Journal of Mammalogy 57: 495–505.

    Article  Google Scholar 

  • Gliwicz J. 1970. Relation between trappability and age of individuals in a population of the bank vole. Acta Theriologica 15: 15–23.

    Google Scholar 

  • Hayes L. D., Chesh A. S., Castro R. A., Ortiz Tolhuysen L., BurgerJ. R., Bhattacharjee J. and Ebensperger L. A. (in press). Fitness consequences of group-living in the degu (Octodon degus), a plural breeder rodent with communal care. Animal Behaviour.

  • Hayes L. D., Chesh A. S. and Ebensperger L. A. 2007. Ecological predictors of range areas and use of burrow systems in the diurnal rodent, Octodon degus. Ethology 113: 155–165. DOI: 10.1111/j.1439-0310.2006.01305.x

    Article  Google Scholar 

  • Iriarte J. A., Contreras L. C. and Jaksic F. M. 1989. A long-term study of a small-mammal assemblage in the central Chilean matorral. Journal of Mammalogy 70: 79–87.

    Article  Google Scholar 

  • Jaksic F. M., Greene H. W. and Yáńez J. L. 1981. The guild structure of a community of predatory vertebrates in central Chile. Oecologia 49: 21–28. DOI: 10.1007/BF00376893

    Article  Google Scholar 

  • Kenagy G. J., Nespolo R. F., Vásquez R. A. and Bozinovic F. 2002. Daily and seasonal limits of time and temperature to activity of degus. Revista Chilena Historia Natural 75: 567–581.

    Google Scholar 

  • Knowles T. W. and Burger J. R. 2008. Predominant use of windthrows by nesting Eastern Woodrats (Neotoma floridana) in the South Carolina coastal plain. American Midland Naturalist 160: 209–219. DOI: 10.1674/0003-0031(2008)160[209:PUOWBN]2.0.CO;2

    Article  Google Scholar 

  • Lambert T. D., Malcolm J. R. and Zimmerman B. L. 2005. Variation in small mammal species richness by trap height and trap type in southeastern Amazonia. Journal of Mammalogy 86: 982–990. DOI: 10.1644/1545-1542(2005)86[982:VISMSR]2.0.CO;2

    Article  Google Scholar 

  • Laudenslayer Jr W. F. and Fargo R. J. 2002. Small mammal populations and ecology in the Kings River sustainable forest ecosystem project area. [In: United States Forest Service General Technical Report. J. Verner, ed]. PSW-183, Washington, D.C. USA: 133–142.

  • Loeb S. C., Chapman G. L. and Ridley T. R. 1999. Sampling small mammals in southeastern forests: the importance of trapping in trees. Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 53: 415–424.

    Google Scholar 

  • Maly M. S. and Cranford J. A. 1985. Relative capture efficiency of large and small Sherman live traps. Acta Theriologica 30: 165–167.

    Google Scholar 

  • Metcalf C. J. E. and Pavard S. 2007. Why evolutionary biologists should be demographers. Trends in Ecology and Evolution 22: 205–212. DOI: 10.1016/j.tree.2006.12.001

    Article  PubMed  Google Scholar 

  • Neal B. R. and Cock A. G. 1969. An analysis of the selection of small African mammals by two break-back traps. Journal of Zoology, London 158: 335–340. DOI: 10.1111/j.1469-7998.1969.tb02152.x O’Farrell M. L., Clark W. A., Emmerson F. H., Juarez S. M.,

    Article  Google Scholar 

  • Kay F. R., O’Farrell T. M. and Goodlett T. Y. 1994. Use of mesh live trap for small mammals: are results from Sherman live traps deceptive? Journal of Mammalogy 75: 692–699.

    Article  Google Scholar 

  • Powell K. L., Robel R. J., Kemp K. E. and Nellis M. D. 1994. Aboveground counts of black-tailed prairie dogs: temporal nature and relationship to burrow entrance density. The Journal of Wildlife Management 58: 361–366.

    Article  Google Scholar 

  • Rose R. K., Slade N. A. and Honacki J. H. 1977. Live trap preference among grassland mammals. Acta Theriologica 22: 297–307.

    Google Scholar 

  • Santos-Filho M., Silva D. J. and Sanaiotti T. M. 2006. Efficiency of four trap types in sampling small mammals in forest fragments, Mato Grosso, Brazil. Mastozoología Neotropical 13: 217–225.

    Google Scholar 

  • Sealander J. A. and James D. 1958. Relative efficiency of different small mammal traps. Journal of Mammalogy 39: 215–223.

    Article  Google Scholar 

  • Slade N. A., Eifler M. A., Gruenhagen N. M. and Davelos A. L. 1993. Differential effectiveness of standard and long Sherman live traps in capturing small mammals. Journal of Mammalogy 74: 156–161.

    Article  Google Scholar 

  • ]Szaro R. C., Simons L. H. and Belfit S. C. 1988. Comparative effectiveness of pitfalls and live-traps in measuring small mammal community structure. [In: Proceedings of the Symposium on the Management of Amphibians, Reptiles, and Small Mammals of North America. R. C. Szaro, K. E. Severson and D. R. Patton, Technical coordinators]. U.S. Forest Service General Technical Report. RM-166 Washington, D.C. USA: 282–288.

  • Van Horne B., Schooley R. L., Knick S. T., Olson G. S. and Burnham K. P. 1997. Use of burrow entrances to indicate densities of Townsend’s ground squirrels. The Journal of Wildlife Management 61: 92–101.

    Article  Google Scholar 

  • White G. C. and Burnham K. P. 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46: S120-S138.

    Article  Google Scholar 

  • Wiener J. G. and Smith M. H. 1972. Relative efficiencies of four small mammal traps. Journal of Mammalogy 53: 868–873.

    Article  Google Scholar 

  • Woods C. A. and Boraker D. K. 1975. Octodon degus. Mammalian Species 67: 1–5.

    Article  Google Scholar 

  • Zar J. H. 1996. Biostatistical analysis. Prentice Hall, Englewood Cliffs, New Jersey: 1–662.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Associate editor was Magdalena Niedziałkowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burger, J.R., Chesh, A.S., Castro, R.A. et al. The influence of trap type on evaluating population structure of the semifossorial and social rodent Octodon degus . Acta Theriol 54, 311–320 (2009). https://doi.org/10.4098/j.at.0001-7051.047.2008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.4098/j.at.0001-7051.047.2008

Key words

Navigation