Skip to main content
Log in

Analysis of a graphene-based silicon electro-absorption modulator in isotropic and anisotropic graphene models

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We theoretically investigated a graphene-based silicon electro-absorption modulator in both isotropic and anisotropic graphene models. Regardless of the graphene model, the optical transmission increases with the chemical potential of graphene because of the Pauli blocking principle. However, we found that the modulator based on the isotropic graphene exhibits an abrupt decrease in transmission for the transverse-magnetic (TM) polarization mode due to the epsilon-near-zero effect in the isotropic graphene at a certain chemical potential. Conversely, the anisotropic graphenebased modulator exhibits no such transmission dip. These particular behaviors provide us with a simple and easy experimental way to confirm whether graphene is an isotropic or anisotropic material. To further enhance the transmission dip in the isotropic graphene model, we suggest a simply modified modulator structure that increases the transmission depth by ~ 0.5 dB/μm for the TM polarization mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes and D. J. Thomson, Nat. Photonics 4, 518 (2010).

    Article  ADS  Google Scholar 

  2. V. J. Sorger, N. D. Lanzillotti-Kimura, R-M. Ma and X. Zhang, Nanophoton. 1, 17 (2012).

    Article  ADS  Google Scholar 

  3. J. T. Kim, IEEE J. Sel. Top. Quantum Electron. 21, 3300108 (2015).

    Article  Google Scholar 

  4. R. M. Briggs, I. M. Pryce and H. A. Atwater, Opt. Express 18, 11192 (2010).

    Article  ADS  Google Scholar 

  5. J. T. Kim, Opt. Lett. 39, 3997 (2014).

    Article  ADS  Google Scholar 

  6. A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. S. Aitchison and J. K. S. Poon, Opt. Express 23, 3657 (2015).

    Article  ADS  Google Scholar 

  7. F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, Nat. Photonics 4, 611 (2010).

    Article  ADS  Google Scholar 

  8. Q. Bao and K. P. Loh, ACS Nano 6, 3677 (2012).

    Article  Google Scholar 

  9. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang and X. Zhang, Nature 474, 64 (2011).

    Article  ADS  Google Scholar 

  10. M. Liu, X. Yin and X. Zhang, Nano Lett. 12, 1482 (2012).

    Article  ADS  Google Scholar 

  11. N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester and M. Li, Nano Lett. 14, 2741 (2014).

    Article  ADS  Google Scholar 

  12. Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen and K. Yvind, Nano Lett. 15, 4393 (2015).

    Article  ADS  Google Scholar 

  13. C. T. Phare, Y-H. D. Lee, J. Cardenas and M. Lipson, Nat. Photonics 9, 511 (2015).

    Article  ADS  Google Scholar 

  14. Z. Sun, A. Martinez and F. Wang, Nat. Photonics 10, 227 (2016).

    Article  ADS  Google Scholar 

  15. Z. Lu and W. Zhao, J. Opt. Soc. Am. B 29, 1490 (2012).

    Article  ADS  Google Scholar 

  16. J. Gosciniak and D. T. H. Tan, Nanotechnol. 24, 185202 (2013).

    Article  ADS  Google Scholar 

  17. J. Gosciniak and D. T. H. Tan, Sci. Rep. 3, 1897 (2013).

    Article  ADS  Google Scholar 

  18. S. J. Koester and M. Li, IEEE J. Sel. Top. Quantum Electron. 20, 6000211 (2014).

    Article  Google Scholar 

  19. J-S. Shin and J. T. Kim, Nanotechnol. 26, 365201 (2015).

    Article  ADS  Google Scholar 

  20. J-S. Shin, J-S. Kim and J. T. Kim, J. Opt. 17, 125801 (2015).

  21. L. A. Falkovsky and A. A. Varlamov, Eur. Phys. J. B 56, 281 (2007).

    Article  ADS  Google Scholar 

  22. G. W. Hanson, J. Appl. Phys. 103, 064302 (2008).

    Article  ADS  Google Scholar 

  23. A. Vakil and N. Engheta, Science 332, 1291 (2011).

    Article  ADS  Google Scholar 

  24. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff and G. Shvets, Nano Lett. 13, 1111 (2013).

    Article  ADS  Google Scholar 

  25. W. Gao, J. Shu, C. Qiu and Q. Xu, ACS Nano 6, 7806 (2012).

    Article  Google Scholar 

  26. C. Dean, A. F. Young, L. Wang, I. Meric, G-H. Lee, K. Watanabe, T. Taniguchi, K. Shepard, P. Kim and J. Hone, Solid State Commun. 152, 1275 (2012).

    Article  ADS  Google Scholar 

  27. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard and C. R. Dean, Science 342, 614 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myung-Ki Kim or Jin Tae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B.J., Kim, MK. & Kim, J.T. Analysis of a graphene-based silicon electro-absorption modulator in isotropic and anisotropic graphene models. Journal of the Korean Physical Society 70, 967–972 (2017). https://doi.org/10.3938/jkps.70.967

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.70.967

Keywords

Navigation