Skip to main content
Log in

Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Robertson, R. M. Wallace Mater. Sci. Eng. R 88, 1–41 (2015).

    Article  Google Scholar 

  2. R. Basak, B. Maiti and A. Mallik, Superlattices Microstruct. 80, 20 (2015).

    Article  ADS  Google Scholar 

  3. S. Capone et al., J. Vac. Sci. Technol. A 16, 3564 (1998).

    Article  ADS  Google Scholar 

  4. J. M. Khoshman, A. Khan and M. E. Kordesch, Surf. Coat. Technol. 202, 2500 (2008).

    Article  Google Scholar 

  5. Y. Wang, Z. Z. Yu, F. Zahid. L. Liu, Y. Zhu, J. Wang and H. Guo, J. Appl. Phys. 116, 023703 (2014).

    Article  ADS  Google Scholar 

  6. Juan C. Ranuárez, M. J. Deen, C.-H. Chen, Microelectron. Reliab. 46, 1939 (2006).

    Article  Google Scholar 

  7. R. K. Nahar, V. Singh and A. Sharma, J. Mater. Sci. Mater. Electron. 18, 615 (2007).

    Article  Google Scholar 

  8. A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt and T. Zabel, J. Appl. Phys. 90, 6466 (2001).

    Article  ADS  Google Scholar 

  9. F. M. Li et al., Appl. Phys. Lett. 98, 252903 (2011).

    Article  ADS  Google Scholar 

  10. V. Dave, P. Dubey, H. O. Gupta and R. Chandra, Thin Solid Films 549, 2 (2013).

    Article  ADS  Google Scholar 

  11. B. Chau, S. Datta, M. Doczv, B. Dovle, J. Kavalieros and M. Metz, IEEE Electron Dev. Lett. 25, 408 (2004).

    Article  ADS  Google Scholar 

  12. K. L. Ganapathi, N. Bhat and S. Mohan, Semicond. Sci. Technol. 29 055007 (2014).

    Article  ADS  Google Scholar 

  13. J. C. Dupin, D. Gonbeau, P Vinatier, A. Levasseur, Phy. Chem. Chem. Phys. 2, 1319 (2000).

    Article  Google Scholar 

  14. L. G. Wang, X. Qian, Y. Q. Cao, Z. Y. Cao, G. Y. Fang, A. D. Li and D. Wu, Nano. Res. Lett. 10, 135 (2015).

    Article  Google Scholar 

  15. G. Aygun, I. Yildiz, J. Appl. Phys. 106, 014312 (2009).

    Article  ADS  Google Scholar 

  16. A. Cantas, G. Aygun and R. Turan, Appl. Surf. Sci. 318, 199 (2014)

    Article  ADS  Google Scholar 

  17. M. Esro, G. Vourlias, C. Somerton, W. I. Milne and G. Adamopoulos, Adv. Funct. Mater. 25, 134 (2015).

    Article  Google Scholar 

  18. A. Deshpande, R. Inman, G. Jursich and C. Takoudis, Microelectron. Eng. 83, 547 (2006).

    Article  Google Scholar 

  19. S. T. Li, S. J. Slivers and M. S. El-Shall, J. Phys. Chem. B 101, 1794 (1997).

    Article  Google Scholar 

  20. S. Suyama, A. Okamoto and T. Serikawa, Appl. Surf. Sci. 33-4 1236 (1988).

    Article  ADS  Google Scholar 

  21. S. Li, X. Qiao and J. Chen, Mater. Chem. Phys. 98, 144 (2006).

    Article  Google Scholar 

  22. Z. Ouennoughi, C. Strenger, F. Bourouba, V. Haeublein, H. Ryssel and L. Frey, Microelectron. Reliab. 53, 1841 (2013).

    Article  Google Scholar 

  23. C. Ko, M. Shandalov, P. C. Mclntyre and S. Ramanathan, Appl. Phys. Lett. 97, 082102 (2010).

    Article  ADS  Google Scholar 

  24. S. Zafar, H. Jagannathan, L. F. Edge and D. Gupta, Appl. Phys. Lett. 98, 152903 (2011).

    Article  ADS  Google Scholar 

  25. E. A. Weiss, R. C. Chiechi, G. K. Kaufman, J. K. Kriebel, Z. Li, M. Duati, M. A. Rampi and G. M. Whitesides, J. Am. Chem. Soc. 129, 4336 (2007).

    Article  Google Scholar 

  26. G. Blaise, J. Electrostat. 50, 69 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, J., Wang, YN. et al. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties. Journal of the Korean Physical Society 68, 679–685 (2016). https://doi.org/10.3938/jkps.68.679

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.679

Keywords

Navigation