Skip to main content
Log in

Time-dependent cylindrical and spherical ion-acoustic solitary structures in relativistic degenerate multi-ion plasmas with positively-charged heavy ions

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The properties of time-dependent cylindrical and spherical, modified ion-acoustic (mIA) solitary structures in relativistic degenerate multi-ion plasmas (containing degenerate electron fluids, inertial positively-, as well as negatively-, charged light ions, and positively-charged static heavy ions) have been investigated theoretically. This investigation is valid for both non-relativistic and ultra-relativistic limits. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) and the mK-dV equations for studying the basic features of solitary waves. The fundamental characteristics of mIA solitary waves are found to be significantly modified by the effects of the degenerate pressures of the electron and the ion fluids, their number densities, and the various charge states of heavy ions. The relevance of our results in astrophysical compact objects like white dwarfs and neutron stars, which are of scientific interest, is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Gottscho and C. E. Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986).

    Article  ADS  Google Scholar 

  2. M. Bacal and G. W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979).

    Article  ADS  Google Scholar 

  3. J. Jacquinot, B. D. McVey and J. E. Scharer, Phys. Rev. Lett. 39, 88 (1977).

    Article  ADS  Google Scholar 

  4. D. E. Shemansky and D. T. Hall, J. Geophys. Res. 97, 4143 (1992).

    Article  ADS  Google Scholar 

  5. B. Hultqvist, M. Øieroset, G. Paschmann and R. Treumann, Magnetospheric Plasma Sources and Losses (Kluwer Academic, Dordrecht, 1999).

    Book  Google Scholar 

  6. K. Stasiewics, Phys. Rev. Lett. 12, 125004 (2004).

    Article  ADS  Google Scholar 

  7. H. Massey, Negative Ions (Cambridge University Press, Cambridge, 1976).

    Google Scholar 

  8. P. H. Chaizy, H. Reme, J. A. Sauvaud, C. D’Uston, R. P. Lin, D. E. Larson, D. L. Mitchell, K. A. Anderson, C. W. Carlson, A. Korth and D. A. Mendis, Nature 349, 393 (1991).

    Article  ADS  Google Scholar 

  9. S. Chandrasekhar, Phi. Mag. 11, 592 (1931).

    Article  Google Scholar 

  10. S. Chandrasekhar, Astrophys. J. 74, 81 (1931).

    Article  ADS  MATH  Google Scholar 

  11. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 170, 405 (1935).

    Google Scholar 

  12. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover Publications, New York, 1939).

    Google Scholar 

  13. M. R. Hossen, L. Nahar, S. Sultana and A. A. Mamun, High Energ. Density Phys. 13, 13 (2014).

    Article  ADS  Google Scholar 

  14. M. R. Hossen and A. A. Mamun, Braz. J. Phys. 44, 673 (2014).

    Article  ADS  Google Scholar 

  15. L. Nahar, M. S. Zobaer, N. Roy and A. A. Mamun, Phys. Plasmas 20, 022304 (2013).

    Article  ADS  Google Scholar 

  16. M. Harwit, Astrophysical Concepts (John Wiley and Sons, New York, 1973).

    Google Scholar 

  17. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (John Wiley and Sons, New York, 1973).

    Google Scholar 

  18. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

    Article  ADS  Google Scholar 

  19. J. P. Ostriker, Annu. Rev. Astron. Astrophys. 9, 535 (1971).

    Article  Google Scholar 

  20. M. Marklund and P. K. Shukla, Rev. Mod. Phys. 78, 591 (2006).

    Article  ADS  Google Scholar 

  21. N. Roy, S. Tasnim and A. A. Mamun, Phys. Plasmas 19, 033705 (2012).

    Article  ADS  Google Scholar 

  22. M. R. Hossen, L. Nahar, S. Sultana and A. A. Mamun, Astrophys. Space Sci. 353, 123 (2014).

    Article  ADS  Google Scholar 

  23. M. R. Hossen, L. Nahar and A. A. Mamun, Braz. J. Phys. 44, 638 (2014).

    Article  ADS  Google Scholar 

  24. T. Padmanabhan, Theoretical Astrophysics (Cambridge University Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  25. A. R. Choudhuri, Astrophysics for Physicist (Cambridge University Press, Cambridge, 2010).

    Book  Google Scholar 

  26. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (The University of Chicago Press, Chicago, 1938).

    Google Scholar 

  27. A. A. Mamun and P. K. Shukla, Phys. Lett. A 324, 4238 (2010).

    Article  ADS  Google Scholar 

  28. A. A. Mamun and P. K. Shukla, Phys. Plasmas 17, 104504 (2010).

    Article  ADS  Google Scholar 

  29. M. Opher, L. O. Silva, D. E. Dauger, V. K. Decyk and J. M. Dawson, Phys. Plasmas 8, 2454 (2001).

    Article  ADS  Google Scholar 

  30. G. Manfredi and P. A. Hervieux, Comp. Mater. Sci. 35, 327 (2006).

    Article  Google Scholar 

  31. H. R. Hamedi, Physica B: Phys. Conden. Matt. 440, 83 (2014).

    Article  ADS  Google Scholar 

  32. S. H. Glenzer and R. Pedmer, Rev. Mod. Phys. 81, 1625 (2009).

    Article  ADS  Google Scholar 

  33. A. Serbeto, L. F. Monteiro, K. H. Tsui and J. T. Mendona, Plasma Phys. Controlled Fusion 51, 124024 (2009).

    Article  ADS  Google Scholar 

  34. T. Akhter, M. M. Hossain and A. A. Mamun, Commun. Theor. Phys. 59, 745 (2013a).

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Hasan, M. M. Hossain and A. A. Mamun, Astro. Phys. Space Sci. 345, 113 (2013b).

    Article  ADS  MATH  Google Scholar 

  36. T. Akhter, M. M. Hossain and A. A. Mamun, Astro. Phys. Space Sci. 345, 283 (2013c).

    Article  ADS  MATH  Google Scholar 

  37. A. A. Mamun, P. K. Shukla and B. Eliasson, Phys. Rev. E 80, 046406 (2009).

    Article  ADS  Google Scholar 

  38. F. Sayed, M. M. Haider and A. A. Mamun, P. K. Shukla, B. Eliasson, and N. Adhikary, Phys. Plasmas 15, 063701 (2008).

    Article  ADS  Google Scholar 

  39. A. A. Mamun and S. Tasnim, Phys. Plasmas 17, 073704 (2010).

    Article  ADS  Google Scholar 

  40. M. S. Zobaer, N. Roy and A. A. Mamun, J. Mod. Phys. 3, 755 (2012).

    Article  Google Scholar 

  41. M. S. Zobaer, N. Roy and A. A. Mamun, Astro. Phys. Space Sci. 343, 675 (2013a).

    Article  ADS  Google Scholar 

  42. M. S. Zobaer, K. N. Mukta, L. Nahar, N. Roy and A. A. Mamun, Phys. Plasmas 20, 043704 (2013b).

    Article  ADS  Google Scholar 

  43. S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4 (1974).

    Article  ADS  Google Scholar 

  44. W. Masood and B. Eliasson, Phys. Plasmas 18, 034503 (2011).

    Article  ADS  Google Scholar 

  45. A. Mustaq, S. Ali and A. Qumar, Commun. Theor. Phys. 59, 479 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Hossen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossen, M.R., Nahar, L. & Mamun, A.A. Time-dependent cylindrical and spherical ion-acoustic solitary structures in relativistic degenerate multi-ion plasmas with positively-charged heavy ions. Journal of the Korean Physical Society 65, 1863–1872 (2014). https://doi.org/10.3938/jkps.65.1863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.1863

Keywords

Navigation