Skip to main content
Log in

Photon beam dosimetry with EBT3 film in heterogeneous regions: Application to the evaluation of dose-calculation algorithms

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

For a better understanding of the accuracy of state-of-the-art-radiation therapies, 2-dimensional dosimetry in a patient-like environment will be helpful. Therefore, the dosimetry of EBT3 films in non-water-equivalent tissues was investigated, and the accuracy of commercially-used dose-calculation algorithms was evaluated with EBT3 measurement. Dose distributions were measured with EBT3 films for an in-house-designed phantom that contained a lung or a bone substitute, i.e., an air cavity (3 × 3 × 3 cm3) or teflon (2 × 2 × 2 cm3 or 3 × 3 × 3 cm3), respectively. The phantom was irradiated with 6-MV X-rays with field sizes of 2 × 2, 3 × 3, and 5 × 5 cm2. The accuracy of EBT3 dosimetry was evaluated by comparing the measured dose with the dose obtained from Monte Carlo (MC) simulations. A dose-to-bone-equivalent material was obtained by multiplying the EBT3 measurements by the stopping power ratio (SPR). The EBT3 measurements were then compared with the predictions from four algorithms: Monte Carlo (MC) in iPlan, acuros XB (AXB), analytical anisotropic algorithm (AAA) in Eclipse, and superposition-convolution (SC) in Pinnacle. For the air cavity, the EBT3 measurements agreed with the MC calculation to within 2% on average. For teflon, the EBT3 measurements differed by 9.297% (±0.9229%) on average from the Monte Carlo calculation before dose conversion, and by 0.717% (±0.6546%) after applying the SPR. The doses calculated by using the MC, AXB, AAA, and SC algorithms for the air cavity differed from the EBT3 measurements on average by 2.174, 2.863, 18.01, and 8.391%, respectively; for teflon, the average differences were 3.447, 4.113, 7.589, and 5.102%. The EBT3 measurements corrected with the SPR agreed with 2% on average both within and beyond the heterogeneities with MC results, thereby indicating that EBT3 dosimetry can be used in heterogeneous media. The MC and the AXB dose calculation algorithms exhibited clinically-acceptable accuracy (<5%) in heterogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ahnesjo and M. M. Aspradakis, Phys. Med. Biol. 44, R99 (1999).

    Article  ADS  Google Scholar 

  2. N. Papanikolaou and S. Stathakis, Med. Phys. 36, 4765 (2009).

    Article  Google Scholar 

  3. C. M. Ma et al., Phys. Med. Biol. 45, 2483 (2000).

    Article  Google Scholar 

  4. T. Krieger and O. A. Sauer, Phys. Med. Biol. 50, 859 (2005).

    Article  Google Scholar 

  5. A. S. Aydarous, P. J. Darley and M. W. Charles, Phys. Med. Biol. 46, 1379 (2001).

    Article  Google Scholar 

  6. B. Arjomandy, R. Tailor, A. Anand, N. Sahoo, M. Gillin, K. Prado and M. Vicic, Med. Phys. 37, 1942 (2010).

    Article  Google Scholar 

  7. S. Devic, N. Tomic, S. Aldelaijan, F. Deblois, J. Seuntjens, M. F. Chan and D. Lewis, Med. Phys. 39, 4850 (2012).

    Article  Google Scholar 

  8. S. Jurkovic, G. Zauhar, D. Faj, D. S. Radojcic, M. Svabic, M. Kasabasic and A. Diklic, Radiol. Oncol. 45, 310 (2011).

    Article  Google Scholar 

  9. N. Hardcastle, A. Basavatia, A. Bayliss and W. A. Tomé, Med. Phys. 38, 4081 (2011).

    Article  Google Scholar 

  10. L. Richley, A. C. John, H. Coomber and S. Fletcher, Phys. Med. Biol. 55, 2601 (2010).

    Article  Google Scholar 

  11. G. Massillon-Jl, Inter. J. Med. Phys. Clin. Engin. Rad. Oncol. 01, 60 (2012).

    Article  Google Scholar 

  12. S. Reinhardt, M. Hillbrand, J. J. Wilkens and W. Assmann, Med. Phys. 39, 5257 (2012).

    Article  Google Scholar 

  13. J. Sorriaux, A. Kacperek, S. Rossomme, J. A. Lee, D. Bertrand, S. Vynckier and E. Sterpin, Phys. Med. (2012).

    Google Scholar 

  14. E. el-Khatib and S. Connors, Phys. Med. Biol. 37, 2083 (1992).

    Article  Google Scholar 

  15. J. V. Siebers, P. J. Keall, A. E. Nahum and R. Mohan, Phys. Med. Biol. 45, 983 (2000).

    Article  Google Scholar 

  16. E. E. Wilcox and G. M. Daskalov, Med. Phys. 35, 2259 (2008).

    Article  Google Scholar 

  17. International Commission on Radiation Units and Measurement. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues, ICRU Report No. 46 (1992).

  18. H. S. Jung, Y. Han, O. Kum, C. H. Kim and J. H. Park, NET 43. 1 (2011).

    Article  Google Scholar 

  19. H. S. Jung, Y. Han, O. Kum and C. H. Kim, Kor. J. Med. Phys. 20, 290 (2009).

    Google Scholar 

  20. D. W. Rogers, B. A. Faddegon, G. X. Ding, C. M. Ma, J. We and T. R. Mackie, Med. Phys. 22, 503 (1995).

    Article  Google Scholar 

  21. O. Kum, H. S. Jeong and Y. Han, J. Korean Phys. Soc. 60, 1433 (2012).

    Article  ADS  Google Scholar 

  22. O. Kum and S. W. Lee, J. Korean Phys. Soc. 47, 716 (2005).

    Google Scholar 

  23. H. K. Kim and O. Kum, J. Korean Phys. Soc. 49, 1640 (2006).

    Google Scholar 

  24. D. W. O. Rogers, I. Kawrakow, J. P. Seuntjens, B. R. B. Walters and E. Mainegra-Hing, NRCC Report PIRS-702 (revB) (2010).

    Google Scholar 

  25. L. Paelinck, N. Reynaert, H. Thierens, C. DeWagter and W. De Neve, Phys. Med. Biol. 48, 1895 (2003).

    Article  Google Scholar 

  26. P. Carrasco, N. Jornet, M. A. Duch, L. Weber, M. Ginjaume, T. Eudaldo, D. Jurado, A. Ruiz and M. Ribas, Med. Phys. 31, 2899 (2004).

    Article  Google Scholar 

  27. A. L. Petoukhova, K. van Wingerden, R. G. Wiggenraad, P. J. van de Vaart, J. van Egmond, E. M. Franken and J. P. van Santvoort, Phys. Med. Biol. 55, 4601 (2010).

    Article  Google Scholar 

  28. G. X. Ding, D. M. Duggan, B. Lu, D. E. Hallahan, A. Cmelak, A. Malcolm, J. Newton, M. Deeley and C. W. Coffey, Med. Phys. 34, 2985 (2007).

    Article  Google Scholar 

  29. N. Papanikolaou, J. J. Battista, A. L. Boyer, C. Kappas, E. Klein, T. R. Mackie, M. Sharpe and J. Van Dyk, AAPM Report No. 85 (2004).

    Google Scholar 

  30. I. J. Das, G. X. Ding and A. Ahnesjo, Med. Phys. 35, 206 (2008).

    Article  Google Scholar 

  31. K. Bush, I. M. Gagne, S. Zavgorodni, W. Ansbacher and W. Beckham, Med. Phys. 38, 2208 (2011).

    Article  Google Scholar 

  32. T. Han, J. K. Mikell, M. Salehpour and F. Mourtada, Med. Phys. 38, 2651 (2011).

    Article  Google Scholar 

  33. A. Fogliata, G. Nicolini, A. Clivio, E. Vanetti and L. Cozzi, Radiat. Oncol. 6, 82 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngyih Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H., Kum, O., Han, Y. et al. Photon beam dosimetry with EBT3 film in heterogeneous regions: Application to the evaluation of dose-calculation algorithms. Journal of the Korean Physical Society 65, 1829–1838 (2014). https://doi.org/10.3938/jkps.65.1829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.1829

Keywords

Navigation